Well-posedness and wave-breaking for the stochastic rotation-two-component Camassa–Holm system

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Yong Chen, Jinqiao Duan, Hongjun Gao
{"title":"Well-posedness and wave-breaking for the stochastic rotation-two-component Camassa–Holm system","authors":"Yong Chen, Jinqiao Duan, Hongjun Gao","doi":"10.1214/22-aap1877","DOIUrl":null,"url":null,"abstract":"We study the global well-posedness and wave-breaking phenomenon for the stochastic rotation-two-component Camassa-Holm (R2CH) system. First, we find a Hamiltonian structure of the R2CH system and use the stochastic Hamiltonian to derive the stochastic R2CH system. Then, we establish the local well-posedness of the stochastic R2CH system using a dispersion-dissipation approximation system and the regularization method. We also show a precise blow-up criterion for the stochastic R2CH system. Moreover, we prove that the global existence of the stochastic R2CH system occurs with high probability. At the end, we consider the transport noise case and establish the local well-posedness and another blow-up criterion.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1877","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the global well-posedness and wave-breaking phenomenon for the stochastic rotation-two-component Camassa-Holm (R2CH) system. First, we find a Hamiltonian structure of the R2CH system and use the stochastic Hamiltonian to derive the stochastic R2CH system. Then, we establish the local well-posedness of the stochastic R2CH system using a dispersion-dissipation approximation system and the regularization method. We also show a precise blow-up criterion for the stochastic R2CH system. Moreover, we prove that the global existence of the stochastic R2CH system occurs with high probability. At the end, we consider the transport noise case and establish the local well-posedness and another blow-up criterion.
随机旋转双分量Camassa-Holm系统的适定性和破波
研究了随机旋转双分量Camassa-Holm(R2CH)系统的全局适定性和破波现象。首先,我们确定了R2CH系统的哈密顿结构,并使用随机哈密顿量导出随机R2CH系统。然后,利用离散耗散近似系统和正则化方法,建立了随机R2CH系统的局部适定性。我们还给出了随机R2CH系统的精确爆破准则。此外,我们还证明了随机R2CH系统的全局存在性是高概率的。最后,我们考虑了运输噪声的情况,建立了局部适定性和另一个爆破准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信