{"title":"Audio Capture Using Structural Sensors on Vibrating Panel Surfaces","authors":"Tre Dipassio, Michael C. Heilemann, M. Bocko","doi":"10.17743/jaes.2022.0049","DOIUrl":null,"url":null,"abstract":"The microphones and loudspeakers of modern compact electronic devices such as smartphones and tablets typically require case penetrations that leave the device vulnerable to environmental damage. To address this, the authors propose a surface-based audio interface that employs force actuators for reproduction and structural vibration sensors to record the vibrations of the display panel induced by incident acoustic waves. This paper reports experimental results showing that recorded speech signals are of sufficient quality to enable high-reliability automatic speech recognition despite degradation by the panel’s resonant properties. The authors report the results of experiments in which acoustic waves containing speech were directed to several panels, and the subsequent vibrations of the panels’ surfaces were recorded using structural sensors. The recording quality was characterized by measuring the speech transmission index, and the recordings were transcribed to text using an automatic speech recognition system from which the resulting word error rate was determined. Experiments showed that the word error rate (10%–13%) achieved for the audio signals recorded by the method described in this paper was comparable to that for audio captured by a high-quality studio microphone (10%). The authors also demonstrated a crosstalk cancellation method that enables the system to simultaneously record and play audio signals.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17743/jaes.2022.0049","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
The microphones and loudspeakers of modern compact electronic devices such as smartphones and tablets typically require case penetrations that leave the device vulnerable to environmental damage. To address this, the authors propose a surface-based audio interface that employs force actuators for reproduction and structural vibration sensors to record the vibrations of the display panel induced by incident acoustic waves. This paper reports experimental results showing that recorded speech signals are of sufficient quality to enable high-reliability automatic speech recognition despite degradation by the panel’s resonant properties. The authors report the results of experiments in which acoustic waves containing speech were directed to several panels, and the subsequent vibrations of the panels’ surfaces were recorded using structural sensors. The recording quality was characterized by measuring the speech transmission index, and the recordings were transcribed to text using an automatic speech recognition system from which the resulting word error rate was determined. Experiments showed that the word error rate (10%–13%) achieved for the audio signals recorded by the method described in this paper was comparable to that for audio captured by a high-quality studio microphone (10%). The authors also demonstrated a crosstalk cancellation method that enables the system to simultaneously record and play audio signals.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.