{"title":"Coercivity for travelling waves in the Gross-Pitaevskii equation in $\\mathbb{R}^2$ for small speed","authors":"D. Chiron, Eliot Pacherie","doi":"10.5565/PUBLMAT6712307","DOIUrl":null,"url":null,"abstract":"In a previous paper, we constructed a smooth branch of travelling waves for the 2 dimensional Gross-Pitaevskii equation. Here, we continue the study of this branch. We show some coercivity results, and we deduce from them the kernel of the linearized operator, a spectral stability result, as well as a uniqueness result in the energy space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6712307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In a previous paper, we constructed a smooth branch of travelling waves for the 2 dimensional Gross-Pitaevskii equation. Here, we continue the study of this branch. We show some coercivity results, and we deduce from them the kernel of the linearized operator, a spectral stability result, as well as a uniqueness result in the energy space.