Separation of Variables and Superintegrability on Riemannian Coverings

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
C. Chanu, G. Rastelli
{"title":"Separation of Variables and Superintegrability on Riemannian Coverings","authors":"C. Chanu, G. Rastelli","doi":"10.3842/SIGMA.2023.062","DOIUrl":null,"url":null,"abstract":"We introduce Stäckel separable coordinates on the covering manifolds $M_k$, where $k$ is a rational parameter, of certain constant-curvature Riemannian manifolds with the structure of warped manifold. These covering manifolds appear implicitly in literature as connected with superintegrable systems with polynomial in the momenta first integrals of arbitrarily high degree, such as the Tremblay-Turbiner-Winternitz system. We study here for the first time multiseparability and superintegrability of natural Hamiltonian systems on these manifolds and see how these properties depend on the parameter $k$.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.062","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce Stäckel separable coordinates on the covering manifolds $M_k$, where $k$ is a rational parameter, of certain constant-curvature Riemannian manifolds with the structure of warped manifold. These covering manifolds appear implicitly in literature as connected with superintegrable systems with polynomial in the momenta first integrals of arbitrarily high degree, such as the Tremblay-Turbiner-Winternitz system. We study here for the first time multiseparability and superintegrability of natural Hamiltonian systems on these manifolds and see how these properties depend on the parameter $k$.
黎曼覆盖上的变量分离与超可积性
我们引入了具有翘曲流形结构的某些常曲率黎曼流形的覆盖流形$M_k$上的Stäckel可分离坐标,其中$k$是有理参数。这些覆盖流形在文献中隐含地表现为与具有任意高阶动量第一积分多项式的超积分系统相连,例如Tremblay-Turbiner-Winternitz系统。我们在这里首次研究了这些流形上自然哈密顿系统的多可分离性和超积分性,并观察了这些性质如何依赖于参数$k$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信