S. Gopinathan, Dmytro Iurashev, A. Bigongiari, M. Heckl
{"title":"Nonlinear analytical flame models with amplitude-dependent time-lag distributions","authors":"S. Gopinathan, Dmytro Iurashev, A. Bigongiari, M. Heckl","doi":"10.1177/1756827717728056","DOIUrl":null,"url":null,"abstract":"In the present work, we formulate a new method to represent a given Flame Describing Function by analytical expressions. The underlying idea is motivated by the observation that different types of perturbations in a burner travel with different speeds and that the arrival of a perturbation at the flame is spread out over time. We develop an analytical model for the Flame Describing Function, which consists of a superposition of several Gaussians, each characterised by three amplitude-dependent quantities: central time-lag, peak value and standard deviation. These quantities are treated as fitting parameters, and they are deduced from the original Flame Describing Function by using error minimisation and nonlinear optimisation techniques. The amplitude-dependence of the fitting parameters is also represented analytically (by linear or quadratic functions). We test our method by using it to make stability predictions for a burner with well-documented stability behaviour (Noiray's matrix burner). This is done in the time-domain with a tailored Green's function approach.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827717728056","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756827717728056","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12
Abstract
In the present work, we formulate a new method to represent a given Flame Describing Function by analytical expressions. The underlying idea is motivated by the observation that different types of perturbations in a burner travel with different speeds and that the arrival of a perturbation at the flame is spread out over time. We develop an analytical model for the Flame Describing Function, which consists of a superposition of several Gaussians, each characterised by three amplitude-dependent quantities: central time-lag, peak value and standard deviation. These quantities are treated as fitting parameters, and they are deduced from the original Flame Describing Function by using error minimisation and nonlinear optimisation techniques. The amplitude-dependence of the fitting parameters is also represented analytically (by linear or quadratic functions). We test our method by using it to make stability predictions for a burner with well-documented stability behaviour (Noiray's matrix burner). This is done in the time-domain with a tailored Green's function approach.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.