{"title":"Post-Irradiation Modulation of Distribution of Interacting Vacancies in the Elastically Anisotropic B.C.C. Crystals","authors":"O. Oliinyk, V. Tatarenko","doi":"10.15407/UFM.19.02.152","DOIUrl":null,"url":null,"abstract":"Spinodal mechanism of formation of a modulated structure in a spatial distribution of vacancies within the body-centred cubic (b.c.c.) crystal after irradiation is conside red. The criterion of modulated-structure formation for the closed interacting-vacancies subsystem within the elastically anisotropic b.c.c. crystal is estimated. As shown, in case of positive factor of elastic anisotropy (ξ > 0 as for Mo, Nb, W crystals), the modulated structures can be formed along the [111] direction, and in case of negative factor of elastic anisotropy (ξ < 0 as for Fe crystal), the modulated structure can be formed along the [100] direction. Dependence of the modulated-structure period of b.c.c.-Mo (Fe)–vacancies’ solution on temperature is plotted. Period of a modulated structure in a spatial distribution of vacancies, which is formed by means of the spinodal mechanism, increases with temperature and is determined by the entropy factor, ‘(electro)chemical’ interaction of vacancies, and elastic properties of b.c.c. crystal.","PeriodicalId":41786,"journal":{"name":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/UFM.19.02.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Spinodal mechanism of formation of a modulated structure in a spatial distribution of vacancies within the body-centred cubic (b.c.c.) crystal after irradiation is conside red. The criterion of modulated-structure formation for the closed interacting-vacancies subsystem within the elastically anisotropic b.c.c. crystal is estimated. As shown, in case of positive factor of elastic anisotropy (ξ > 0 as for Mo, Nb, W crystals), the modulated structures can be formed along the [111] direction, and in case of negative factor of elastic anisotropy (ξ < 0 as for Fe crystal), the modulated structure can be formed along the [100] direction. Dependence of the modulated-structure period of b.c.c.-Mo (Fe)–vacancies’ solution on temperature is plotted. Period of a modulated structure in a spatial distribution of vacancies, which is formed by means of the spinodal mechanism, increases with temperature and is determined by the entropy factor, ‘(electro)chemical’ interaction of vacancies, and elastic properties of b.c.c. crystal.
期刊介绍:
The review journal Uspehi Fiziki Metallov (abbreviated key-title: Usp. Fiz. Met.) was founded in 2000. In 2018, the journal officially obtained parallel title Progress in Physics of Metals (abbreviated title — Prog. Phys. Met.). The journal publishes articles (that has not been published nowhere earlier and are not being considered for publication elsewhere) comprising reviews of experimental and theoretical results in physics and technology of metals, alloys, compounds, and materials that possess metallic properties; reviews on monographs, information about conferences, seminars; data on the history of metal physics; advertising of new technologies, materials and devices. Scope of the Journal: Electronic Structure, Electrical, Magnetic and Optical Properties; Interactions of Radiation and Particles with Solids and Liquids; Structure and Properties of Amorphous Solids and Liquids; Defects and Dynamics of Crystal Structure; Mechanical, Thermal and Kinetic Properties; Phase Equilibria and Transformations; Interphase Boundaries, Metal Surfaces and Films; Structure and Properties of Nanoscale and Mesoscopic Materials; Treatment of Metallic Materials and Its Effects on Microstructure and Properties.