{"title":"Deep Learning in Biomedical Data Science","authors":"P. Baldi","doi":"10.1146/ANNUREV-BIODATASCI-080917-013343","DOIUrl":null,"url":null,"abstract":"Since the 1980s, deep learning and biomedical data have been coevolving and feeding each other. The breadth, complexity, and rapidly expanding size of biomedical data have stimulated the development of novel deep learning methods, and application of these methods to biomedical data have led to scientific discoveries and practical solutions. This overview provides technical and historical pointers to the field, and surveys current applications of deep learning to biomedical data organized around five subareas, roughly of increasing spatial scale: chemoinformatics, proteomics, genomics and transcriptomics, biomedical imaging, and health care. The black box problem of deep learning methods is also briefly discussed.","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2018-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-BIODATASCI-080917-013343","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREV-BIODATASCI-080917-013343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 77
Abstract
Since the 1980s, deep learning and biomedical data have been coevolving and feeding each other. The breadth, complexity, and rapidly expanding size of biomedical data have stimulated the development of novel deep learning methods, and application of these methods to biomedical data have led to scientific discoveries and practical solutions. This overview provides technical and historical pointers to the field, and surveys current applications of deep learning to biomedical data organized around five subareas, roughly of increasing spatial scale: chemoinformatics, proteomics, genomics and transcriptomics, biomedical imaging, and health care. The black box problem of deep learning methods is also briefly discussed.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.