Linearized Transformed $L1$ Galerkin FEMs with Unconditional Convergence for Nonlinear Time Fractional Schrödinger Equations

IF 1.9 4区 数学 Q1 MATHEMATICS
Wanqiu Yuan, Dongfang Li null, C. Zhang
{"title":"Linearized Transformed $L1$ Galerkin FEMs with Unconditional Convergence for Nonlinear Time Fractional Schrödinger Equations","authors":"Wanqiu Yuan, Dongfang Li null, C. Zhang","doi":"10.4208/nmtma.oa-2022-0087","DOIUrl":null,"url":null,"abstract":". A linearized transformed L 1 Galerkin finite element method (FEM) is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations. Unconditionally optimal error estimates of the fully-discrete scheme are proved. Such error estimates are obtained by combining a new discrete fractional Gr¨onwall inequality, the corresponding Sobolev embedding theorems and some inverse inequalities. While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches. Numerical examples are presented to confirm the theoretical results","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/nmtma.oa-2022-0087","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

. A linearized transformed L 1 Galerkin finite element method (FEM) is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations. Unconditionally optimal error estimates of the fully-discrete scheme are proved. Such error estimates are obtained by combining a new discrete fractional Gr¨onwall inequality, the corresponding Sobolev embedding theorems and some inverse inequalities. While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches. Numerical examples are presented to confirm the theoretical results
非线性时间分数阶Schrödinger方程的线性化变换$L1$ Galerkin fem的无条件收敛性
.提出了一种线性化变换的L1伽辽金有限元法(FEM),用于数值求解多维时间分数阶Schr¨odinger方程。证明了完全离散格式的无条件最优误差估计。这种误差估计是通过结合一个新的离散分数Gr¨onwall不等式、相应的Sobolev嵌入定理和一些逆不等式得到的。而先前的无条件收敛结果通常是通过使用时空误差吐出方法来获得的。给出了数值例子来证实理论结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
>12 weeks
期刊介绍: Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信