Solving a real-world nurse rostering problem by Simulated Annealing

IF 1.5 Q3 HEALTH CARE SCIENCES & SERVICES
Sara Ceschia , Luca Di Gaspero , Vincenzo Mazzaracchio , Giuseppe Policante , Andrea Schaerf
{"title":"Solving a real-world nurse rostering problem by Simulated Annealing","authors":"Sara Ceschia ,&nbsp;Luca Di Gaspero ,&nbsp;Vincenzo Mazzaracchio ,&nbsp;Giuseppe Policante ,&nbsp;Andrea Schaerf","doi":"10.1016/j.orhc.2023.100379","DOIUrl":null,"url":null,"abstract":"<div><p>Designing high quality nurse rostering plans is essential for health care facilities in order to guarantee efficiency, safety and quality-of-care balanced with staff well-being.</p><p>We introduce a new real-world formulation for the nurse rostering problem, arising in many Italian healthcare institutions, which has been developed in collaboration with a primary software company in the field. It considers nurses with different skills, special shifts depending on the skills, time work-load limits, and different types of days-off. In addition, preferences and incompatibilities between nurses are taken into account.</p><p>We propose a MIP model and a local search method, driven by a Simulated Annealing metaheuristic, based on a combination of two neighborhoods. The solution method was tested on 34 real-world instances coming from various healthcare institutions in North Italy. The dataset is available at <span>https://bitbucket.org/satt/nrp-instances</span><svg><path></path></svg>, along with our best solutions.</p></div>","PeriodicalId":46320,"journal":{"name":"Operations Research for Health Care","volume":"36 ","pages":"Article 100379"},"PeriodicalIF":1.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research for Health Care","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211692323000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 2

Abstract

Designing high quality nurse rostering plans is essential for health care facilities in order to guarantee efficiency, safety and quality-of-care balanced with staff well-being.

We introduce a new real-world formulation for the nurse rostering problem, arising in many Italian healthcare institutions, which has been developed in collaboration with a primary software company in the field. It considers nurses with different skills, special shifts depending on the skills, time work-load limits, and different types of days-off. In addition, preferences and incompatibilities between nurses are taken into account.

We propose a MIP model and a local search method, driven by a Simulated Annealing metaheuristic, based on a combination of two neighborhoods. The solution method was tested on 34 real-world instances coming from various healthcare institutions in North Italy. The dataset is available at https://bitbucket.org/satt/nrp-instances, along with our best solutions.

用模拟退火法解决现实世界的护士名册问题
设计高质量的护士名册计划对于保健设施来说至关重要,以便保证效率、安全和护理质量与工作人员的福祉相平衡。我们为许多意大利医疗保健机构中出现的护士名册问题引入了一个新的现实世界公式,该公式是与该领域的主要软件公司合作开发的。它考虑了不同技能的护士,根据技能的特殊班次,时间工作量限制和不同类型的休息日。此外,还考虑到护士之间的偏好和不相容。我们提出了一种基于两个邻域组合的MIP模型和一种由模拟退火元启发式驱动的局部搜索方法。解决方案方法在来自意大利北部不同医疗机构的34个实际实例上进行了测试。该数据集可在https://bitbucket.org/satt/nrp-instances上获得,以及我们的最佳解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Operations Research for Health Care
Operations Research for Health Care HEALTH CARE SCIENCES & SERVICES-
CiteScore
3.90
自引率
0.00%
发文量
9
审稿时长
69 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信