New α-NaFeO2 synthesis route for green sodium-ion batteries

IF 1.8 4区 材料科学 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
M. G. D. Guaita, Otávio José de Oliveira, Paulo Rogério Catarini da Silva, L. H. Dall’Antonia, A. Urbano
{"title":"New α-NaFeO2 synthesis route for green sodium-ion batteries","authors":"M. G. D. Guaita, Otávio José de Oliveira, Paulo Rogério Catarini da Silva, L. H. Dall’Antonia, A. Urbano","doi":"10.1680/jgrma.21.00050","DOIUrl":null,"url":null,"abstract":"New technologies have been investigated to replace the use of lithium and cobalt ions, raw materials of the cathode active material of lithium-ion batteries. Among the emerging technologies stands out one that uses sodium (Na+) and iron ions. Sodium iron oxide (NaFeO2) has polymorphism, with only the α phase being active for the reversible deintercalation of sodium ions, so this phase has potential application as an electroactive material in green sodium-ion batteries. The novel synthesis of α-sodium iron oxide through the sol–gel route, which provides a material with small particles and high crystallinity, is described in this work. Through X-ray diffraction and Rietveld refinement, it was found that the initial chelating agent/metals ratio affects the concentration of the α and β phases at the end of the synthetic route. The α-sodium iron oxide, obtained with an appropriate chelating agent/metals ratio, showed high purity and crystallinity. A discharge capacity of approximately 110 mAh/g was achieved when the α-sodium iron oxide electrode, obtained through the sol–gel route, was cycled from 1.00 to 4.00 V against sodium ions/sodium (Na), corresponding to the intercalation of approximately 0.5 sodium ions of the Na1−x FeO2 formula. The success of the synthesis of the α-sodium iron oxide phase can lower the cost and ensure the economic viability of green sodium-ion batteries.","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jgrma.21.00050","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

New technologies have been investigated to replace the use of lithium and cobalt ions, raw materials of the cathode active material of lithium-ion batteries. Among the emerging technologies stands out one that uses sodium (Na+) and iron ions. Sodium iron oxide (NaFeO2) has polymorphism, with only the α phase being active for the reversible deintercalation of sodium ions, so this phase has potential application as an electroactive material in green sodium-ion batteries. The novel synthesis of α-sodium iron oxide through the sol–gel route, which provides a material with small particles and high crystallinity, is described in this work. Through X-ray diffraction and Rietveld refinement, it was found that the initial chelating agent/metals ratio affects the concentration of the α and β phases at the end of the synthetic route. The α-sodium iron oxide, obtained with an appropriate chelating agent/metals ratio, showed high purity and crystallinity. A discharge capacity of approximately 110 mAh/g was achieved when the α-sodium iron oxide electrode, obtained through the sol–gel route, was cycled from 1.00 to 4.00 V against sodium ions/sodium (Na), corresponding to the intercalation of approximately 0.5 sodium ions of the Na1−x FeO2 formula. The success of the synthesis of the α-sodium iron oxide phase can lower the cost and ensure the economic viability of green sodium-ion batteries.
用于绿色钠离子电池的新型α-NaFeO2合成路线
已经研究了新技术来取代锂离子和钴离子的使用,它们是锂离子电池正极活性材料的原料。在新兴技术中,最突出的是使用钠(Na+)和铁离子的技术。氧化铁钠(NaFeO2)具有多态性,只有α相对钠离子的可逆脱嵌具有活性,因此该相在绿色钠离子电池中具有潜在的电活性材料应用前景。本工作描述了通过溶胶-凝胶途径合成α-氧化铁钠的新方法,该方法提供了一种颗粒小、结晶度高的材料。通过X射线衍射和Rietveld细化,发现初始螯合剂/金属的比例影响合成路线末端α和β相的浓度。以适当的螯合剂/金属比例制备的α-氧化铁钠具有较高的纯度和结晶度。放电容量约为110 当通过溶胶-凝胶途径获得的α-氧化铁钠电极从1.00循环到4.00时,达到mAh/g V相对于钠离子/钠(Na),对应于Na1−x FeO2式的大约0.5个钠离子的嵌入。α-氧化铁钠相的合成成功可以降低成本,确保绿色钠离子电池的经济可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Materials
Green Materials Environmental Science-Pollution
CiteScore
3.50
自引率
15.80%
发文量
24
期刊介绍: The focus of Green Materials relates to polymers and materials, with an emphasis on reducing the use of hazardous substances in the design, manufacture and application of products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信