{"title":"Synthesis and characterization of resol type phenol-formaldehyde resin improved by SiO2-Np","authors":"G. Özbay, Erkan Sami Kokten, A. Özçifçi","doi":"10.37763/WR.1336-4561/66.1.161169","DOIUrl":null,"url":null,"abstract":"In this work, resol type phenol–formaldehyde (RPF) resin was modified with silicon dioxide nanoparticles (SiO2-Np). SiO2-Np was added at varying ratios from 1 to 4 wt.% to improve the bonding performance of the RPF resins. The physical characteristics of the nano-modified RPF (nano-RPF) resins were examined. The effects of modification were studied by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The results of FT-IR revealed that the nano-RPF resins were successfully produced by phenol, formaldehyde, and SiO2-Np. The nano-RPF resins demonstrated high thermal stability at temperatures above 500°C. The adhesive performance of the nano-RPF resins was investigated under dry and wet conditions. The nano-RPF resins indicated better adhesive performance than unmodified RPF resin. The RPF resin could be improved by SiO2-Np.","PeriodicalId":23786,"journal":{"name":"Wood Research","volume":"66 1","pages":"161-170"},"PeriodicalIF":0.9000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37763/WR.1336-4561/66.1.161169","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 3
Abstract
In this work, resol type phenol–formaldehyde (RPF) resin was modified with silicon dioxide nanoparticles (SiO2-Np). SiO2-Np was added at varying ratios from 1 to 4 wt.% to improve the bonding performance of the RPF resins. The physical characteristics of the nano-modified RPF (nano-RPF) resins were examined. The effects of modification were studied by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The results of FT-IR revealed that the nano-RPF resins were successfully produced by phenol, formaldehyde, and SiO2-Np. The nano-RPF resins demonstrated high thermal stability at temperatures above 500°C. The adhesive performance of the nano-RPF resins was investigated under dry and wet conditions. The nano-RPF resins indicated better adhesive performance than unmodified RPF resin. The RPF resin could be improved by SiO2-Np.
期刊介绍:
Wood Research publishes original papers aimed at recent advances in all branches of wood science (biology, chemistry, wood physics and mechanics, mechanical and chemical processing etc.). Submission of the manuscript implies that it has not been published before and it is not under consideration for publication elsewhere.