{"title":"Noether symmetry analysis in scalar tensor cosmology: a study of classical and quantum cosmology","authors":"Dipankar Laya, Roshni Bhaumik, Subenoy Chakraborty","doi":"10.1140/epjc/s10052-023-11875-3","DOIUrl":null,"url":null,"abstract":"<div><p>The present work deals with a complex scalar field in scalar tensor gravity theory in the background of spatially flat Friedmann–Lema<span>\\({\\hat{i}}\\)</span>tre–Robertson–Walker (FLRW) geometry. Noether symmetry analysis has been used to determine the classical cosmological solution of a scalar field in scalar–tensor theory with the scalar field as a nonminimally coupled complex field. Noether symmetry analysis is not only used to find a symmetry vector and potential but also it helps in finding an appropriate transformation <span>\\((a,~\\phi ,~\\theta )\\rightarrow (u,~v,~\\theta )\\)</span> in the augmented space so that one of the new variables becomes cyclic. In quantum cosmology, the Wheeler–DeWitt (WD) equation has been formed in the minisuperspace and its solution i.e. the wave function of the universe has been evaluated by using the operator version of the conserved (Noether) charge. Finally, the nature of the classical solution has been discussed from the observational point of view and the cosmological singularity has been examined both classically and quantum mechanically.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11875-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-023-11875-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
The present work deals with a complex scalar field in scalar tensor gravity theory in the background of spatially flat Friedmann–Lema\({\hat{i}}\)tre–Robertson–Walker (FLRW) geometry. Noether symmetry analysis has been used to determine the classical cosmological solution of a scalar field in scalar–tensor theory with the scalar field as a nonminimally coupled complex field. Noether symmetry analysis is not only used to find a symmetry vector and potential but also it helps in finding an appropriate transformation \((a,~\phi ,~\theta )\rightarrow (u,~v,~\theta )\) in the augmented space so that one of the new variables becomes cyclic. In quantum cosmology, the Wheeler–DeWitt (WD) equation has been formed in the minisuperspace and its solution i.e. the wave function of the universe has been evaluated by using the operator version of the conserved (Noether) charge. Finally, the nature of the classical solution has been discussed from the observational point of view and the cosmological singularity has been examined both classically and quantum mechanically.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.