Logarithmic Barrier Method Via Minorant Function for Linear Semidefinite Programming

IF 0.4 Q4 MATHEMATICS
A. Leulmi
{"title":"Logarithmic Barrier Method Via Minorant Function for Linear Semidefinite Programming","authors":"A. Leulmi","doi":"10.2478/amsil-2022-0021","DOIUrl":null,"url":null,"abstract":"Abstract We propose in this study, a new logarithmic barrier approach to solve linear semidefinite programming problem. We are interested in computation of the direction by Newton’s method and of the displacement step using minorant functions instead of line search methods in order to reduce the computation cost. Our new approach is even more beneficial than classical line search methods. This purpose is confirmed by some numerical simulations showing the e˙ectiveness of the algorithm developed in this work, which are presented in the last section of this paper.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"37 1","pages":"95 - 116"},"PeriodicalIF":0.4000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2022-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We propose in this study, a new logarithmic barrier approach to solve linear semidefinite programming problem. We are interested in computation of the direction by Newton’s method and of the displacement step using minorant functions instead of line search methods in order to reduce the computation cost. Our new approach is even more beneficial than classical line search methods. This purpose is confirmed by some numerical simulations showing the e˙ectiveness of the algorithm developed in this work, which are presented in the last section of this paper.
基于小函数的对数屏障法求解线性半定规划
摘要在这项研究中,我们提出了一种新的对数屏障方法来解决线性半定规划问题。为了降低计算成本,我们对用牛顿法计算方向和用次函数代替线搜索法计算位移步长感兴趣。我们的新方法甚至比传统的直线搜索方法更有益。本文最后一节给出的一些数值模拟表明了本文中开发的算法的有效性,从而证实了这一目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信