Bayesian quantile semiparametric mixed-effects double regression models

IF 0.7 Q3 STATISTICS & PROBABILITY
Duo Zhang, Liucang Wu, K. Ye, Min Wang
{"title":"Bayesian quantile semiparametric mixed-effects double regression models","authors":"Duo Zhang, Liucang Wu, K. Ye, Min Wang","doi":"10.1080/24754269.2021.1877961","DOIUrl":null,"url":null,"abstract":"Semiparametric mixed-effects double regression models have been used for analysis of longitudinal data in a variety of applications, as they allow researchers to jointly model the mean and variance of the mixed-effects as a function of predictors. However, these models are commonly estimated based on the normality assumption for the errors and the results may thus be sensitive to outliers and/or heavy-tailed data. Quantile regression is an ideal alternative to deal with these problems, as it is insensitive to heteroscedasticity and outliers and can make statistical analysis more robust. In this paper, we consider Bayesian quantile regression analysis for semiparametric mixed-effects double regression models based on the asymmetric Laplace distribution for the errors. We construct a Bayesian hierarchical model and then develop an efficient Markov chain Monte Carlo sampling algorithm to generate posterior samples from the full posterior distributions to conduct the posterior inference. The performance of the proposed procedure is evaluated through simulation studies and a real data application.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"5 1","pages":"303 - 315"},"PeriodicalIF":0.7000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2021.1877961","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1877961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

Semiparametric mixed-effects double regression models have been used for analysis of longitudinal data in a variety of applications, as they allow researchers to jointly model the mean and variance of the mixed-effects as a function of predictors. However, these models are commonly estimated based on the normality assumption for the errors and the results may thus be sensitive to outliers and/or heavy-tailed data. Quantile regression is an ideal alternative to deal with these problems, as it is insensitive to heteroscedasticity and outliers and can make statistical analysis more robust. In this paper, we consider Bayesian quantile regression analysis for semiparametric mixed-effects double regression models based on the asymmetric Laplace distribution for the errors. We construct a Bayesian hierarchical model and then develop an efficient Markov chain Monte Carlo sampling algorithm to generate posterior samples from the full posterior distributions to conduct the posterior inference. The performance of the proposed procedure is evaluated through simulation studies and a real data application.
贝叶斯分位数半参数混合效应双回归模型
半参数混合效应双回归模型已被用于分析各种应用中的纵向数据,因为它们允许研究人员将混合效应的平均值和方差作为预测因子的函数进行联合建模。然而,这些模型通常是基于误差的正态性假设来估计的,因此结果可能对异常值和/或重尾数据敏感。分位数回归是处理这些问题的理想选择,因为它对异方差和异常值不敏感,并且可以使统计分析更加稳健。在本文中,我们考虑了半参数混合效应双回归模型的贝叶斯分位数回归分析,该模型基于误差的不对称拉普拉斯分布。我们构建了一个贝叶斯层次模型,然后开发了一种有效的马尔可夫链蒙特卡罗采样算法,从全后验分布中生成后验样本,进行后验推理。通过仿真研究和实际数据应用对所提出程序的性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信