A robust Condence Interval Based on Modied Trimmed Standard Deviation for the Mean of Positively Skewed Populations

IF 0.6 Q4 STATISTICS & PROBABILITY
Hayriye Esra Akyüz, M. Abu-Shawiesh
{"title":"A robust Condence Interval Based on Modied Trimmed Standard Deviation for the Mean of Positively Skewed Populations","authors":"Hayriye Esra Akyüz, M. Abu-Shawiesh","doi":"10.1285/I20705948V13N1P164","DOIUrl":null,"url":null,"abstract":"In this study, we propose a robust confidence interval for the mean of skewed populations. It is simple adjustment of the Student-t confidence interval based on the trimmed mean and the modified trimmed standard deviation. The proposed confidence interval is compared with existing confidence intervals in terms of coverage probability and average width for normal and skewed distributions with different parameter and skewness. The simulation study shows that the proposed robust confidence interval performs the best among the compared confidence intervals and it is better than the classical Student-t confidence interval. Also, proposed confidence interval has narrowest average width in all sample sizes. In addition to the simulation,some real-life examples have been considered for illustrating which support the findings of the simulation study. Consequently, we recommend confidence interval based on trimmed mean and the modified trimmed standard deviation to estimate the mean of positively skewed populations.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"13 1","pages":"164-182"},"PeriodicalIF":0.6000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V13N1P164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a robust confidence interval for the mean of skewed populations. It is simple adjustment of the Student-t confidence interval based on the trimmed mean and the modified trimmed standard deviation. The proposed confidence interval is compared with existing confidence intervals in terms of coverage probability and average width for normal and skewed distributions with different parameter and skewness. The simulation study shows that the proposed robust confidence interval performs the best among the compared confidence intervals and it is better than the classical Student-t confidence interval. Also, proposed confidence interval has narrowest average width in all sample sizes. In addition to the simulation,some real-life examples have been considered for illustrating which support the findings of the simulation study. Consequently, we recommend confidence interval based on trimmed mean and the modified trimmed standard deviation to estimate the mean of positively skewed populations.
基于修正修正标准差的正偏总体均值稳健置信区间
在这项研究中,我们为偏斜总体的平均值提出了一个稳健的置信区间。这是基于修剪平均值和修改的修剪标准差对Student-t置信区间的简单调整。将所提出的置信区间与现有的置信区间在不同参数和偏度的正态分布和偏态分布的覆盖概率和平均宽度方面进行了比较。仿真研究表明,在比较的置信区间中,所提出的鲁棒置信区间表现最好,并且优于经典的Student-t置信区间。此外,所提出的置信区间在所有样本大小中具有最窄的平均宽度。除了模拟之外,还考虑了一些真实的例子来说明哪些例子支持模拟研究的结果。因此,我们建议基于修剪平均值和修正的修剪标准差的置信区间来估计正偏总体的平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信