Dual predictive model adaptive switching control for directional control of tractor semitrailer combinations

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Xiaobing Chen, Yao Qiang
{"title":"Dual predictive model adaptive switching control for directional control of tractor semitrailer combinations","authors":"Xiaobing Chen, Yao Qiang","doi":"10.1177/16878132231189311","DOIUrl":null,"url":null,"abstract":"In order to ensure that safety and reliability of tractor semitrailer combinations (TSCs) on the road, the human drivers’ steering decisions need to comprehensively consider the trajectories and states of the tractor and semitrailer. For this purpose, a dual predictive model adaptive switching control decision for directional control is proposed. Firstly, a multi-point preview algorithm and a general regression neural network are designed to percept the current local target paths for the tractor and semitrailer. Then, a kinematic predictive model control algorithm for low-speed path tracking control and a dynamic predictive model control algorithm for high-speed path following and lateral stability control are established respectively. In addition, an S-type switching function is introduced to realize smooth switching between the two control algorithms. Finally, the directional control decision in this study is validated by the numerical simulations under different conditions and compared with single-point preview driver and the MPC driver without considering semitrailer. The results show that the proposed approach can accurately track the target path and effectively improve the high-speed lateral stability.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132231189311","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to ensure that safety and reliability of tractor semitrailer combinations (TSCs) on the road, the human drivers’ steering decisions need to comprehensively consider the trajectories and states of the tractor and semitrailer. For this purpose, a dual predictive model adaptive switching control decision for directional control is proposed. Firstly, a multi-point preview algorithm and a general regression neural network are designed to percept the current local target paths for the tractor and semitrailer. Then, a kinematic predictive model control algorithm for low-speed path tracking control and a dynamic predictive model control algorithm for high-speed path following and lateral stability control are established respectively. In addition, an S-type switching function is introduced to realize smooth switching between the two control algorithms. Finally, the directional control decision in this study is validated by the numerical simulations under different conditions and compared with single-point preview driver and the MPC driver without considering semitrailer. The results show that the proposed approach can accurately track the target path and effectively improve the high-speed lateral stability.
牵引车半挂车组合方向控制的双预测模型自适应切换控制
为了保证牵引车和半挂车在道路上行驶的安全性和可靠性,驾驶员的转向决策需要综合考虑牵引车和半挂车的行驶轨迹和状态。为此,提出了一种用于方向控制的双预测模型自适应开关控制决策。首先,设计了多点预览算法和广义回归神经网络来感知当前牵引车和半挂车的局部目标路径;然后,分别建立了用于低速路径跟踪控制的运动学预测模型控制算法,以及用于高速路径跟随和横向稳定控制的动态预测模型控制算法。此外,引入s型切换函数,实现两种控制算法之间的平滑切换。最后,通过不同条件下的数值模拟验证了本文的方向控制决策,并与单点预告驱动和不考虑半挂车的MPC驱动进行了比较。结果表明,该方法能准确跟踪目标路径,有效提高高速横向稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信