Curve graphs for Artin–Tits groups of type B , A∼ and C∼ are hyperbolic

IF 1.1 Q1 MATHEMATICS
M. Calvez, B. A. Cisneros de la Cruz
{"title":"Curve graphs for Artin–Tits groups of type B , A∼ and C∼ are hyperbolic","authors":"M. Calvez, B. A. Cisneros de la Cruz","doi":"10.1112/tlm3.12029","DOIUrl":null,"url":null,"abstract":"The graph of irreducible parabolic subgroups is a combinatorial object associated to an Artin–Tits group A defined so as to coincide with the curve graph of the (n+1) ‐times punctured disk when A is Artin's braid group on (n+1) strands. In this case, it is a hyperbolic graph, by the celebrated Masur–Minsky's theorem. Hyperbolicity of the graph of irreducible parabolic subgroups for more general Artin–Tits groups is an important open question. In this paper, we give a partial affirmative answer.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

The graph of irreducible parabolic subgroups is a combinatorial object associated to an Artin–Tits group A defined so as to coincide with the curve graph of the (n+1) ‐times punctured disk when A is Artin's braid group on (n+1) strands. In this case, it is a hyperbolic graph, by the celebrated Masur–Minsky's theorem. Hyperbolicity of the graph of irreducible parabolic subgroups for more general Artin–Tits groups is an important open question. In this paper, we give a partial affirmative answer.
Artin-Tits B、A~和C~类型组的曲线图为双曲线
不可约抛物子群的图是一个与Artin–Tits群a相关的组合对象,定义为当a是(n+1)链上的Artin编织群时,与(n+1)次穿刺盘的曲线图重合。在这种情况下,根据著名的马苏尔-明斯基定理,它是一个双曲图。更一般的Artin-Tits群的不可约抛物子群图的双曲性是一个重要的开放问题。在本文中,我们给出了部分肯定的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信