Higher genera for proper actions of Lie groups, II: The case of manifolds with boundary

IF 0.5 Q3 MATHEMATICS
Paolo Piazza, H. Posthuma
{"title":"Higher genera for proper actions of Lie groups, II: The case of manifolds with boundary","authors":"Paolo Piazza, H. Posthuma","doi":"10.2140/akt.2021.6.713","DOIUrl":null,"url":null,"abstract":"Let G be a finitely connected Lie group and let K be a maximal compact subgroup. Let M be a cocompact G-proper manifold with boundary, endowed with a G-invariant metric which is of product type near the boundary. Under additional assumptions on G, for example that it satisfies the Rapid Decay condition and is such that G/K has nonpositive sectional curvature, we define higher Atiyah-Patodi-Singer C^*-indices associated to smooth group cocycles on G and to a generalized G-equivariant Dirac operator D on M with L^2-invertible boundary operator D_\\partial. We then establish a higher index formula for these C^*-indices and use it in order to introduce higher genera for M, thus generalizing to manifolds with boundary the results that we have established in Part 1. Our results apply in particular to a semisimple Lie group G. We use crucially the pairing between suitable relative cyclic cohomology groups and relative K-theory groups.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2021.6.713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let G be a finitely connected Lie group and let K be a maximal compact subgroup. Let M be a cocompact G-proper manifold with boundary, endowed with a G-invariant metric which is of product type near the boundary. Under additional assumptions on G, for example that it satisfies the Rapid Decay condition and is such that G/K has nonpositive sectional curvature, we define higher Atiyah-Patodi-Singer C^*-indices associated to smooth group cocycles on G and to a generalized G-equivariant Dirac operator D on M with L^2-invertible boundary operator D_\partial. We then establish a higher index formula for these C^*-indices and use it in order to introduce higher genera for M, thus generalizing to manifolds with boundary the results that we have established in Part 1. Our results apply in particular to a semisimple Lie group G. We use crucially the pairing between suitable relative cyclic cohomology groups and relative K-theory groups.
李群固有作用的高级类,II:有边界流形的情况
设G是一个有限连通李群,设K是一个极大紧子群。设M是一个有边界的紧g -固有流形,在边界附近赋一个积型的g不变度规。在G满足快速衰减条件和G/K具有非正截面曲率的附加假设下,我们定义了G上光滑群环和M上具有L^2可逆边界算子D_\偏的广义G-等变Dirac算子D的高Atiyah-Patodi-Singer C^*指标。然后,我们为这些C^*-指标建立了一个高指标公式,并使用它来引入M的高属,从而将我们在第1部分中建立的结果推广到有边界的流形。我们的结果特别适用于半单李群g。我们关键地使用了合适的相对循环上同群和相对k理论群之间的配对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信