Interval-Censored Regression with Non-Proportional Hazards with Applications

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2023-05-17 DOI:10.3390/stats6020041
F. Prataviera, E. M. Hashimoto, E. M. Ortega, T. Savian, G. Cordeiro
{"title":"Interval-Censored Regression with Non-Proportional Hazards with Applications","authors":"F. Prataviera, E. M. Hashimoto, E. M. Ortega, T. Savian, G. Cordeiro","doi":"10.3390/stats6020041","DOIUrl":null,"url":null,"abstract":"Proportional hazards models and, in some situations, accelerated failure time models, are not suitable for analyzing data when the failure ratio between two individuals is not constant. We present a Weibull accelerated failure time model with covariables on the location and scale parameters. By considering the effects of covariables not only on the location parameter, but also on the scale, a regression should be able to adequately describe the difference between treatments. In addition, the deviance residuals adapted for data with the interval censored and the exact time of failure proved to be satisfactory to verify the fit of the model. This information favors the Weibull regression as an alternative to the proportional hazards models without masking the effect of the explanatory variables.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6020041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Proportional hazards models and, in some situations, accelerated failure time models, are not suitable for analyzing data when the failure ratio between two individuals is not constant. We present a Weibull accelerated failure time model with covariables on the location and scale parameters. By considering the effects of covariables not only on the location parameter, but also on the scale, a regression should be able to adequately describe the difference between treatments. In addition, the deviance residuals adapted for data with the interval censored and the exact time of failure proved to be satisfactory to verify the fit of the model. This information favors the Weibull regression as an alternative to the proportional hazards models without masking the effect of the explanatory variables.
非比例风险区间截尾回归及其应用
当两个人之间的故障率不恒定时,比例危险模型和在某些情况下的加速故障时间模型不适合分析数据。我们提出了一个威布尔加速失效时间模型,该模型在位置和尺度参数上具有协变量。通过考虑协变量不仅对位置参数的影响,而且对尺度的影响,回归应该能够充分描述治疗之间的差异。此外,适用于具有区间截尾和精确失效时间的数据的偏差残差被证明是令人满意的,以验证模型的拟合性。这些信息有利于威布尔回归作为比例风险模型的替代方案,而不会掩盖解释变量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信