Evaluation of a fire safety risk prediction model for an existing building

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Waleed A. Rzaij, B. Al-Obaidi
{"title":"Evaluation of a fire safety risk prediction model for an existing building","authors":"Waleed A. Rzaij, B. Al-Obaidi","doi":"10.1515/jmbm-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract Fire is one of the most critical risks devastating to human life and property. Therefore, humans make different efforts to deal with fire hazards. Many techniques have been developed to assess fire safety risks. One of these methods is to predict the outbreak of a fire in buildings, and although it is hard to predict when a fire will start, it is critical to do so to safeguard human life and property. This research deals with evaluating the safety risks of the existing building in the city of Samawah/Iraq and determining the appropriateness of these buildings in terms of safety from fire hazards. Twelve parameters are certified based on the National Fire Protection Association (NFPA2016) code. The concept of giving weight to each criterion was adopted to classify the criteria according to their importance and then conduct an on-site examination of these existing buildings to test the selected criteria. The result indicates a possible fire risk in these buildings due to the lack of compliance with fire safety instructions in the approved codes.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":"31 1","pages":"64 - 70"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Fire is one of the most critical risks devastating to human life and property. Therefore, humans make different efforts to deal with fire hazards. Many techniques have been developed to assess fire safety risks. One of these methods is to predict the outbreak of a fire in buildings, and although it is hard to predict when a fire will start, it is critical to do so to safeguard human life and property. This research deals with evaluating the safety risks of the existing building in the city of Samawah/Iraq and determining the appropriateness of these buildings in terms of safety from fire hazards. Twelve parameters are certified based on the National Fire Protection Association (NFPA2016) code. The concept of giving weight to each criterion was adopted to classify the criteria according to their importance and then conduct an on-site examination of these existing buildings to test the selected criteria. The result indicates a possible fire risk in these buildings due to the lack of compliance with fire safety instructions in the approved codes.
既有建筑火灾安全风险预测模型的评价
摘要火灾是危害人类生命财产安全的最严重的危险之一。因此,人类在应对火灾隐患方面做出了不同的努力。已经开发了许多评估火灾安全风险的技术。其中一种方法是预测建筑物火灾的爆发,虽然很难预测何时会发生火灾,但这对保护人类的生命和财产至关重要。本研究涉及评估伊拉克萨马瓦市现有建筑物的安全风险,并确定这些建筑物在火灾危险方面的适当性。12个参数根据美国国家消防协会(NFPA2016)规范进行认证。我们采用了赋予每个标准权重的概念,根据这些标准的重要性对其进行分类,然后对这些现有建筑进行现场检查,以测试选定的标准。结果显示,这些楼宇可能存在火警风险,原因是不符合认可守则的消防安全指示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Mechanical Behavior of Materials
Journal of the Mechanical Behavior of Materials Materials Science-Materials Science (miscellaneous)
CiteScore
3.00
自引率
11.10%
发文量
76
审稿时长
30 weeks
期刊介绍: The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信