Semigroups in 3-graded Lie groups and endomorphisms of standard subspaces

Pub Date : 2019-12-31 DOI:10.1215/21562261-2022-0017
K. Neeb
{"title":"Semigroups in 3-graded Lie groups and endomorphisms of standard subspaces","authors":"K. Neeb","doi":"10.1215/21562261-2022-0017","DOIUrl":null,"url":null,"abstract":"Let V be a standard subspace in the complex Hilbert space H and U : G \\to U(H) be a unitary representation of a finite dimensional Lie group. We assume the existence of an element h in the Lie algebra of G such that U(exp th) is the modular group of V and that the modular involution J_V normalizes U(G). We want to determine the semigroup $S_V = \\{ g\\in G : U(g)V \\subseteq V\\}.$ In previous work we have seen that its infinitesimal generators span a Lie algebra on which ad h defines a 3-grading, and here we completely determine the semigroup S_V under the assumption that ad h defines a 3-grading. Concretely, we show that the ad h-eigenspaces for the eigenvalue $\\pm 1$ contain closed convex cones $C_\\pm$, such that $S_V = exp(C_+) G_V exp(C_-)$, where $G_V$ is the stabilizer of V in G. To obtain this result we compare several subsemigroups of G specified by the grading and the positive cone $C_U$ of U. In particular, we show that the orbit U(G)V, endowed with the inclusion order, is an ordered symmetric space covering the adjoint orbit $Ad(G)h$, endowed with the partial order defined by~$C_U$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Let V be a standard subspace in the complex Hilbert space H and U : G \to U(H) be a unitary representation of a finite dimensional Lie group. We assume the existence of an element h in the Lie algebra of G such that U(exp th) is the modular group of V and that the modular involution J_V normalizes U(G). We want to determine the semigroup $S_V = \{ g\in G : U(g)V \subseteq V\}.$ In previous work we have seen that its infinitesimal generators span a Lie algebra on which ad h defines a 3-grading, and here we completely determine the semigroup S_V under the assumption that ad h defines a 3-grading. Concretely, we show that the ad h-eigenspaces for the eigenvalue $\pm 1$ contain closed convex cones $C_\pm$, such that $S_V = exp(C_+) G_V exp(C_-)$, where $G_V$ is the stabilizer of V in G. To obtain this result we compare several subsemigroups of G specified by the grading and the positive cone $C_U$ of U. In particular, we show that the orbit U(G)V, endowed with the inclusion order, is an ordered symmetric space covering the adjoint orbit $Ad(G)h$, endowed with the partial order defined by~$C_U$.
分享
查看原文
3阶李群中的半群与标准子空间的自同态
设V是复希尔伯特空间H和U中的标准子空间:G \到U(H)是有限维李群的酉表示。我们假设在G的李代数中存在一个元素h,使得U(exp th)是V的模群,并且模对合J_V标准化了U(G)。我们要确定半群$S_V = \{g\in g: U(g)V \subseteq V\}。在前面的工作中,我们已经看到它的无穷小生成张成了一个李代数,在这个李代数上ad h定义了一个3-阶,这里我们在ad h定义了一个3-阶的假设下完全确定了半群S_V。具体地说,我们证明了特征值$\pm 1$的ad - h特征空间包含闭合凸锥$C_\pm$,使得$S_V = exp(C_+) G_V exp(C_-)$,其中$G_V$是G中V的稳定子。为了得到这一结果,我们比较了G的几个子半群和U的正锥$C_U$。特别地,我们证明了赋予包含序的轨道U(G)V是一个覆盖伴随轨道$ ad (G)h$的有序对称空间。具有由~$C_U$定义的偏序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信