{"title":"Mixed precision LU factorization on GPU tensor cores: reducing data movement and memory footprint","authors":"Florent Lopez, Théo Mary","doi":"10.1177/10943420221136848","DOIUrl":null,"url":null,"abstract":"Modern GPUs equipped with mixed precision tensor core units present great potential to accelerate dense linear algebra operations such as LU factorization. However, state-of-the-art mixed half/single precision LU factorization algorithms all require the matrix to be stored in single precision, leading to expensive data movement and storage costs. This is explained by the fact that simply switching the storage precision from single to half leads to significant loss of accuracy, forfeiting all accuracy benefits from using tensor core technology. In this article, we propose a new factorization algorithm that is able to store the matrix in half precision without incurring any significant loss of accuracy. Our approach is based on a left-looking scheme employing single precision buffers of controlled size and a mixed precision doubly partitioned algorithm exploiting tensor cores in the panel factorizations. Our numerical results show that compared with the state of the art, the proposed approach is of similar accuracy but with only half the data movement and memory footprint, and hence potentially much faster: it achieves up to 2× and 3.5× speedups on V100 and A100 GPUs, respectively.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"37 1","pages":"165 - 179"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420221136848","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 9
Abstract
Modern GPUs equipped with mixed precision tensor core units present great potential to accelerate dense linear algebra operations such as LU factorization. However, state-of-the-art mixed half/single precision LU factorization algorithms all require the matrix to be stored in single precision, leading to expensive data movement and storage costs. This is explained by the fact that simply switching the storage precision from single to half leads to significant loss of accuracy, forfeiting all accuracy benefits from using tensor core technology. In this article, we propose a new factorization algorithm that is able to store the matrix in half precision without incurring any significant loss of accuracy. Our approach is based on a left-looking scheme employing single precision buffers of controlled size and a mixed precision doubly partitioned algorithm exploiting tensor cores in the panel factorizations. Our numerical results show that compared with the state of the art, the proposed approach is of similar accuracy but with only half the data movement and memory footprint, and hence potentially much faster: it achieves up to 2× and 3.5× speedups on V100 and A100 GPUs, respectively.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.