G. Soto-Valle, Kexin Hu, Madeline E. Holda, Yepu Cui, M. Tentzeris
{"title":"Novel Additive Manufacturing-Enabled RF Devices for 5G/mmWave, IoT, Smart Skins, and Wireless Sensing Applications","authors":"G. Soto-Valle, Kexin Hu, Madeline E. Holda, Yepu Cui, M. Tentzeris","doi":"10.1142/s0129156422400171","DOIUrl":null,"url":null,"abstract":"The recent developments in mmWave and Internet of Things (IoT) technologies have dramatically increased the interest and demand for radio frequency (RF) devices that can be used for applications such as smart cities, energy harvesting, and ubiquitous wireless sensor networks. Additive manufacturing technologies (AMT) plays an important role to support these applications, as they allows to significantly reduce fabrication costs and times while enabling the achievement of devices with more complex geometries and the possibility of using a wide variety of materials. This publication reviews recent developments of state-of-the-art wireless devices including reconfigurable antennas, frequency-selective surfaces and highly scalable phased arrays enabled by AMT capabilities. It also discusses the benefits of AMT in the fabrication of interconnects that are suitable for packaging of fully-integrated antennas.","PeriodicalId":35778,"journal":{"name":"International Journal of High Speed Electronics and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Speed Electronics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129156422400171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The recent developments in mmWave and Internet of Things (IoT) technologies have dramatically increased the interest and demand for radio frequency (RF) devices that can be used for applications such as smart cities, energy harvesting, and ubiquitous wireless sensor networks. Additive manufacturing technologies (AMT) plays an important role to support these applications, as they allows to significantly reduce fabrication costs and times while enabling the achievement of devices with more complex geometries and the possibility of using a wide variety of materials. This publication reviews recent developments of state-of-the-art wireless devices including reconfigurable antennas, frequency-selective surfaces and highly scalable phased arrays enabled by AMT capabilities. It also discusses the benefits of AMT in the fabrication of interconnects that are suitable for packaging of fully-integrated antennas.
期刊介绍:
Launched in 1990, the International Journal of High Speed Electronics and Systems (IJHSES) has served graduate students and those in R&D, managerial and marketing positions by giving state-of-the-art data, and the latest research trends. Its main charter is to promote engineering education by advancing interdisciplinary science between electronics and systems and to explore high speed technology in photonics and electronics. IJHSES, a quarterly journal, continues to feature a broad coverage of topics relating to high speed or high performance devices, circuits and systems.