G. Giuliani, Hugues Cazeaux, Pierre-Yves Burgi, Charlotte Poussin, Jean-Philippe Richard, B. Chatenoux
{"title":"SwissEnvEO: A FAIR National Environmental Data Repository for Earth Observation Open Science","authors":"G. Giuliani, Hugues Cazeaux, Pierre-Yves Burgi, Charlotte Poussin, Jean-Philippe Richard, B. Chatenoux","doi":"10.5334/DSJ-2021-022","DOIUrl":null,"url":null,"abstract":"Environmental scientific research is highly becoming data-driven and dependent on high performance computing infrastructures to process ever increasing large volume and diverse data sets. Consequently, there is a growing recognition of the need to share data, methods, algorithms, and infrastructure to make scientific research more effective, efficient, open, transparent, reproducible, accessible, and usable by different users. However, Earth Observations (EO) Open Science is still undervalued, and different challenges remains to achieve the vision of transforming EO data into actionable knowledge by lowering the entry barrier to massive-use Big Earth Data analysis and derived information products. Currently, FAIR-compliant digital repositories cannot fully satisfy the needs of EO users, while Spatial Data Infrastructures (SDI) are not fully FAIR-compliant and have difficulties in handling Big Earth Data. In response to these issues and the need to strengthen Open and Reproducible EO science, this paper presents SwissEnvEO, a Spatial Data Infrastructure complemented with digital repository capabilities to facilitate the publication of Ready to Use information products, at national scale, derived from satellite EO data available in an EO Data Cube in full compliance with FAIR principles.","PeriodicalId":35375,"journal":{"name":"Data Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/DSJ-2021-022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9
Abstract
Environmental scientific research is highly becoming data-driven and dependent on high performance computing infrastructures to process ever increasing large volume and diverse data sets. Consequently, there is a growing recognition of the need to share data, methods, algorithms, and infrastructure to make scientific research more effective, efficient, open, transparent, reproducible, accessible, and usable by different users. However, Earth Observations (EO) Open Science is still undervalued, and different challenges remains to achieve the vision of transforming EO data into actionable knowledge by lowering the entry barrier to massive-use Big Earth Data analysis and derived information products. Currently, FAIR-compliant digital repositories cannot fully satisfy the needs of EO users, while Spatial Data Infrastructures (SDI) are not fully FAIR-compliant and have difficulties in handling Big Earth Data. In response to these issues and the need to strengthen Open and Reproducible EO science, this paper presents SwissEnvEO, a Spatial Data Infrastructure complemented with digital repository capabilities to facilitate the publication of Ready to Use information products, at national scale, derived from satellite EO data available in an EO Data Cube in full compliance with FAIR principles.
期刊介绍:
The Data Science Journal is a peer-reviewed electronic journal publishing papers on the management of data and databases in Science and Technology. Details can be found in the prospectus. The scope of the journal includes descriptions of data systems, their publication on the internet, applications and legal issues. All of the Sciences are covered, including the Physical Sciences, Engineering, the Geosciences and the Biosciences, along with Agriculture and the Medical Science. The journal publishes papers about data and data systems; it does not publish data or data compilations. However it may publish papers about methods of data compilation or analysis.