Spectral properties of local and nonlocal problems for the diffusion-wave equation of fractional order

IF 0.7 Q2 MATHEMATICS
N. Adil, A. Berdyshev
{"title":"Spectral properties of local and nonlocal problems for the diffusion-wave equation of fractional order","authors":"N. Adil, A. Berdyshev","doi":"10.31489/2023m2/4-20","DOIUrl":null,"url":null,"abstract":"The paper investigates the issues of solvability and spectral properties of local and nonlocal problems for the fractional order diffusion-wave equation. The regular and strong solvability to problems stated in the domains, both with characteristic and non-characteristic boundaries are proved. Unambiguous solvability is established and theorems on the existence of eigenvalues or the Volterra property of the problems under consideration are proved.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m2/4-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper investigates the issues of solvability and spectral properties of local and nonlocal problems for the fractional order diffusion-wave equation. The regular and strong solvability to problems stated in the domains, both with characteristic and non-characteristic boundaries are proved. Unambiguous solvability is established and theorems on the existence of eigenvalues or the Volterra property of the problems under consideration are proved.
分数阶扩散波动方程的局部和非局部问题的谱性质
研究了分数阶扩散波动方程的局部和非局部问题的可解性和谱性质问题。证明了具有特征边界和非特征边界的域中问题的正则性和强可解性。建立了不模糊可解性,并证明了所考虑问题的特征值或Volterra性质的存在性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信