Global optimum solutions for a system of (k, ψ)-Hilfer fractional differential equations: Best proximity point approach

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
P. Patle, M. Gabeleh, M. de La Sen
{"title":"Global optimum solutions for a system of (k, ψ)-Hilfer fractional differential equations: Best proximity point approach","authors":"P. Patle, M. Gabeleh, M. de La Sen","doi":"10.1515/dema-2022-0253","DOIUrl":null,"url":null,"abstract":"Abstract In this article, a class of cyclic (noncyclic) operators are defined on Banach spaces via concept of measure of noncompactness using some abstract functions. The best proximity point (pair) results are manifested for the said operators. The obtained main results are applied to demonstrate the existence of optimum solutions of a system of fractional differential equations involving ( k , ψ ) \\left(k,\\psi ) -Hilfer fractional derivatives.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, a class of cyclic (noncyclic) operators are defined on Banach spaces via concept of measure of noncompactness using some abstract functions. The best proximity point (pair) results are manifested for the said operators. The obtained main results are applied to demonstrate the existence of optimum solutions of a system of fractional differential equations involving ( k , ψ ) \left(k,\psi ) -Hilfer fractional derivatives.
一类(k, ψ)-Hilfer分数阶微分方程系统的全局最优解:最佳邻近点法
摘要本文利用一些抽象函数,通过非紧测度的概念,在Banach空间上定义了一类循环(非循环)算子。对于所述操作员,最佳接近点(对)结果被显示出来。将得到的主要结果应用于证明一类含有(k,ψ)\left(k,\psi)-Hilfer分数导数的分数阶微分方程组最优解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信