{"title":"Impact of Reservoir Heterogeneity on the Control of Water Encroachment into Gas-Condensate Reservoirs during CO2 Injection","authors":"S. Matkivskyi, O. Burachok","doi":"10.2478/mspe-2022-0008","DOIUrl":null,"url":null,"abstract":"Abstract The paper evaluates application of CO2 injection for the control of water encroachment from the aquifer into gascondensate reservoir under active natural water drive. The results of numerical simulations indicated that injection of CO2 at the initial gas-water contact (GWC) level reduces the influx of water into gas-bearing zone and stabilizes the operation of production wells for a longer period. The optimum number of injection wells that leads to the maximum estimated ultimate recovery (EUR) factor was derived based on statistical analysis of the results. The maximum number of injection wells at the moment of CO2 break-through into production wells for homogeneous reservoir is equal to 6.41 (6) and for heterogeneous – 7.74 (8) wells. Study results indicated that with the increase of reservoir heterogeneity, denser injection well pattern is needed for the efficient blockage of aquifer water influx in comparison to homogeneous one with the same conditions. Gas EUR factor for the maximum number of injection wells in homogenous model is equal 64.05% and in heterogeneous – 55.56%. Base depletion case the EURs are 51.72% and 49.44%, respectively. The study results showed the technological efficiency of CO2 injection into the producing reservoir at initial GWC for the reduction of water influx and improvement of ultimate hydrocarbon recovery.","PeriodicalId":44097,"journal":{"name":"Management Systems in Production Engineering","volume":"30 1","pages":"62 - 68"},"PeriodicalIF":1.4000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Management Systems in Production Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mspe-2022-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract The paper evaluates application of CO2 injection for the control of water encroachment from the aquifer into gascondensate reservoir under active natural water drive. The results of numerical simulations indicated that injection of CO2 at the initial gas-water contact (GWC) level reduces the influx of water into gas-bearing zone and stabilizes the operation of production wells for a longer period. The optimum number of injection wells that leads to the maximum estimated ultimate recovery (EUR) factor was derived based on statistical analysis of the results. The maximum number of injection wells at the moment of CO2 break-through into production wells for homogeneous reservoir is equal to 6.41 (6) and for heterogeneous – 7.74 (8) wells. Study results indicated that with the increase of reservoir heterogeneity, denser injection well pattern is needed for the efficient blockage of aquifer water influx in comparison to homogeneous one with the same conditions. Gas EUR factor for the maximum number of injection wells in homogenous model is equal 64.05% and in heterogeneous – 55.56%. Base depletion case the EURs are 51.72% and 49.44%, respectively. The study results showed the technological efficiency of CO2 injection into the producing reservoir at initial GWC for the reduction of water influx and improvement of ultimate hydrocarbon recovery.