A generalized exponential distribution with increasing, decreasing and constant shape hazard curves

IF 0.6 Q4 STATISTICS & PROBABILITY
Sharqa Hashmi, M. A. Haq, R. Usman
{"title":"A generalized exponential distribution with increasing, decreasing and constant shape hazard curves","authors":"Sharqa Hashmi, M. A. Haq, R. Usman","doi":"10.1285/I20705948V12N1P223","DOIUrl":null,"url":null,"abstract":"This paper introduces a generalization of moment exponential distribution so called Kumaraswamy Moment Exponential (KwME) distribution. The limit behaviour of its density and hazard functions are described. Some properties of the proposed distribution are discussed including moments, skewness, kurtosis, quantile function, and mode. Characterizations based on truncated moments and hazard function are presented. Renyi and q-entropies, mean residual life (MRL) and mean inactivity time (MIT) of X, and order statistics are determined. The maximum likelihood estimation (MLE) is used to estimate the model parameters. Two real data sets are used to compare the KwME distribution with other competitive models and concluded that it could serve as a better alternative lifetime distribution than existing well known models.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"12 1","pages":"223-244"},"PeriodicalIF":0.6000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V12N1P223","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V12N1P223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces a generalization of moment exponential distribution so called Kumaraswamy Moment Exponential (KwME) distribution. The limit behaviour of its density and hazard functions are described. Some properties of the proposed distribution are discussed including moments, skewness, kurtosis, quantile function, and mode. Characterizations based on truncated moments and hazard function are presented. Renyi and q-entropies, mean residual life (MRL) and mean inactivity time (MIT) of X, and order statistics are determined. The maximum likelihood estimation (MLE) is used to estimate the model parameters. Two real data sets are used to compare the KwME distribution with other competitive models and concluded that it could serve as a better alternative lifetime distribution than existing well known models.
具有递增、递减和常形危险曲线的广义指数分布
本文介绍了矩指数分布的一个推广,即Kumaraswamy矩指数分布。描述了其密度的极限行为和危险函数。讨论了所提出分布的一些性质,包括矩、偏度、峰度、分位数函数和模。给出了基于截断矩和危险函数的特征描述。确定了X的仁义熵和q熵、平均剩余寿命(MRL)和平均不活动时间(MIT)以及阶数统计量。最大似然估计(MLE)用于估计模型参数。使用两个真实数据集将KwME分布与其他竞争模型进行比较,得出结论,它可以作为比现有已知模型更好的替代寿命分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信