Geometric optics expansion for weakly well-posed hyperbolic boundary value problem: The glancing degeneracy

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Antoine Benoit, R. Loyer
{"title":"Geometric optics expansion for weakly well-posed hyperbolic boundary value problem: The glancing degeneracy","authors":"Antoine Benoit, R. Loyer","doi":"10.3233/asy-231838","DOIUrl":null,"url":null,"abstract":"This article aims to finalize the classification of weakly well-posed hyperbolic boundary value problems in the half-space. Such problems with loss of derivatives are rather classical in the literature and appear for example in (Arch. Rational Mech. Anal. 101 (1988) 261–292) or (In Analyse Mathématique et Applications (1988) 319–356 Gauthier-Villars). It is known that depending on the kind of the area of the boundary of the frequency space on which the uniform Kreiss–Lopatinskii condition degenerates then the energy estimate can include different losses. The three first possible areas of degeneracy have been studied in (Annales de l’Institut Fourier 60 (2010) 2183–2233) and (Differential Integral Equations 27 (2014) 531–562) by the use of geometric optics expansions. In this article we use the same kind of tools in order to deal with the last remaining case, namely a degeneracy in the glancing area. In comparison to the first cases studied we will see that the equation giving the amplitude of the leading order term in the expansion, and thus initializing the whole construction of the expansion, is not a transport equation anymore but it is given by some Fourier multiplier. This multiplier needs to be invert in order to recover the first amplitude. As an application we discuss the existing estimates of (Discrete Contin. Dyn. Syst., Ser. B 23 (2018) 1347–1361; SIAM J. Math. Anal. 44 (2012) 1925–1949) for the wave equation with Neumann boundary condition.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231838","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims to finalize the classification of weakly well-posed hyperbolic boundary value problems in the half-space. Such problems with loss of derivatives are rather classical in the literature and appear for example in (Arch. Rational Mech. Anal. 101 (1988) 261–292) or (In Analyse Mathématique et Applications (1988) 319–356 Gauthier-Villars). It is known that depending on the kind of the area of the boundary of the frequency space on which the uniform Kreiss–Lopatinskii condition degenerates then the energy estimate can include different losses. The three first possible areas of degeneracy have been studied in (Annales de l’Institut Fourier 60 (2010) 2183–2233) and (Differential Integral Equations 27 (2014) 531–562) by the use of geometric optics expansions. In this article we use the same kind of tools in order to deal with the last remaining case, namely a degeneracy in the glancing area. In comparison to the first cases studied we will see that the equation giving the amplitude of the leading order term in the expansion, and thus initializing the whole construction of the expansion, is not a transport equation anymore but it is given by some Fourier multiplier. This multiplier needs to be invert in order to recover the first amplitude. As an application we discuss the existing estimates of (Discrete Contin. Dyn. Syst., Ser. B 23 (2018) 1347–1361; SIAM J. Math. Anal. 44 (2012) 1925–1949) for the wave equation with Neumann boundary condition.
弱适定双曲边值问题的几何光学展开:掠光简并
本文旨在确定半空间中弱适定双曲型边值问题的分类。这类带有导数损失的问题在文献中是相当经典的,例如在(Arch)。合理的机械。肛门。101(1988)261-292)或(In analysis mathacimmatique et Applications (1988) 319-356 Gauthier-Villars)。已知根据均匀Kreiss-Lopatinskii条件退化所处的频率空间边界面积的种类,能量估计可以包含不同的损失。在(Annales de l’institut傅里叶60(2010)2183-2233)和(微分积分方程27(2014)531-562)中,使用几何光学展开研究了退化的三个第一可能区域。在本文中,我们使用相同的工具来处理最后一种剩余的情况,即掠射区域的简并。与第一个案例相比,我们会看到给出展开中阶项振幅的方程,从而初始化整个展开的结构,不再是输运方程而是由傅里叶乘数给出的。为了恢复第一个振幅,这个乘法器需要反转。作为一个应用,我们讨论了离散连续的现有估计。直流发电机系统。,爵士。B 23 (2018) 1347-1361;SIAM J. Math。与诺伊曼边界条件的波动方程。44(2012)1925-1949)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信