Super and Hyper Products of Super Relations

Q4 Mathematics
Á. Száz
{"title":"Super and Hyper Products of Super Relations","authors":"Á. Száz","doi":"10.2478/tmmp-2021-0007","DOIUrl":null,"url":null,"abstract":"Abstract If R is a relation on X to Y, U is a relation on P (X) to Y, and V is a relation on P (X) to P (Y), then we say that R is an ordinary relation, U is a super relation, and V is a hyper relation on X to Y. Motivated by an ingenious idea of Emilia Przemska on a unified treatment of open- and closed-like sets, we shall introduce and investigate here four reasonable notions of product relations for super relations. In particular, for any two super relations U and V on X, we define two super relations U * V and U * V, and two hyper relations U ★ V and U * V on X such that : (U*V)(A)=(A∪U(A))∩V(A),(U*V)(A)=(A∩U(A))∪U(A) \\begin{array}{*{20}{l}} {(U*V)(A) = (A\\mathop \\cup \\nolimits^ U(A))\\mathop \\cap \\nolimits^ V(A),}\\\\ {(U*V)(A) = (A\\mathop \\cap \\nolimits^ U(A))\\mathop \\cup \\nolimits^ U(A)} \\end{array} and (U★V)(A)={B⊆X: (U*V)(A)⊆B⊆(U*V)(A)},(U*V)(A)={B⊆X: (U∩V)(A)⊆B⊆(U∪V)(A)}\\begin{array}{*{20}{l}} {(UV)(A) = \\{ B \\subseteq X:\\,(U*V)(A) \\subseteq B \\subseteq (U*V)(A)\\} ,}\\\\ {(U*V)(A) = \\{ B \\subseteq X:\\,(U\\mathop \\cap \\nolimits^ V)(A) \\subseteq B \\subseteq (U\\mathop \\cup \\nolimits^ V)(A)\\} } \\end{array} for all A ⊆ X. By using the distributivity of the operation ∩ over ∪, we can at once see that U * V ⊆ U * V. Moreover, if U ⊆ V, then we can also see that U * V = U * V. The most simple case is when U is an interior relation on X and V is the associated closure relation defined such that V (A) = U (Ac)c for all A ⊆ X.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"78 1","pages":"85 - 118"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2021-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract If R is a relation on X to Y, U is a relation on P (X) to Y, and V is a relation on P (X) to P (Y), then we say that R is an ordinary relation, U is a super relation, and V is a hyper relation on X to Y. Motivated by an ingenious idea of Emilia Przemska on a unified treatment of open- and closed-like sets, we shall introduce and investigate here four reasonable notions of product relations for super relations. In particular, for any two super relations U and V on X, we define two super relations U * V and U * V, and two hyper relations U ★ V and U * V on X such that : (U*V)(A)=(A∪U(A))∩V(A),(U*V)(A)=(A∩U(A))∪U(A) \begin{array}{*{20}{l}} {(U*V)(A) = (A\mathop \cup \nolimits^ U(A))\mathop \cap \nolimits^ V(A),}\\ {(U*V)(A) = (A\mathop \cap \nolimits^ U(A))\mathop \cup \nolimits^ U(A)} \end{array} and (U★V)(A)={B⊆X: (U*V)(A)⊆B⊆(U*V)(A)},(U*V)(A)={B⊆X: (U∩V)(A)⊆B⊆(U∪V)(A)}\begin{array}{*{20}{l}} {(UV)(A) = \{ B \subseteq X:\,(U*V)(A) \subseteq B \subseteq (U*V)(A)\} ,}\\ {(U*V)(A) = \{ B \subseteq X:\,(U\mathop \cap \nolimits^ V)(A) \subseteq B \subseteq (U\mathop \cup \nolimits^ V)(A)\} } \end{array} for all A ⊆ X. By using the distributivity of the operation ∩ over ∪, we can at once see that U * V ⊆ U * V. Moreover, if U ⊆ V, then we can also see that U * V = U * V. The most simple case is when U is an interior relation on X and V is the associated closure relation defined such that V (A) = U (Ac)c for all A ⊆ X.
超级关系的超级和超级产物
如果R是X到Y上的关系,U是P (X)到Y上的关系,V是P (X)到P (Y)上的关系,那么我们就说R是普通关系,U是超关系,V是X到Y上的超关系。在Emilia Przemska关于开闭集统一处理的一个巧妙思想的启发下,我们将引入并研究超关系的四个合理的积关系概念。特别地,对于X上的任意两个超关系U和V,我们定义了两个超关系U * V和U * V,以及X上的两个超关系U★V和U * V,使得:(U*V)(A)=(A∪U(A))∩V(A),(U*V)(A)=(A∩U(A))∪U(A) \begin{array}{*{20}{l}} {(U*V)(A) = (A\mathop \cup \nolimits^ U(A))\mathop \cap \nolimits^ V(A),}\\ {(U*V)(A) = (A\mathop \cap \nolimits^ U(A))\mathop \cup \nolimits^ U(A)} \end{array}和(U★V)(A)= {b白日梦:(u * v)(a)},(U*V)(A)= {b蔓蔓性:(u∩v)(a)贝蔓蔓性(u∩v)(a)}\begin{array}{*{20}{l}} {(UV)(A) = \{ B \subseteq X:\,(U*V)(A) \subseteq B \subseteq (U*V)(A)\} ,}\\ {(U*V)(A) = \{ B \subseteq X:\,(U\mathop \cap \nolimits^ V)(A) \subseteq B \subseteq (U\mathop \cup \nolimits^ V)(A)\} } \end{array}对于所有的A (X),利用运算∩在∪上的分布性,我们可以立即得到U*V≠U*V,如果U≠V,那么我们也可以得到U*V = U*V。最简单的情况是,U是X上的一个内关系,V是所有A (X)定义为V(A) = U(Ac)c的关联闭包关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信