Petrogenesis and tectonic setting of Early Cretaceous mafic dykes in the North Qinling Orogenic Belt, central China: constraints on the lithospheric lower crust delamination
{"title":"Petrogenesis and tectonic setting of Early Cretaceous mafic dykes in the North Qinling Orogenic Belt, central China: constraints on the lithospheric lower crust delamination","authors":"Y. N. Huang, D. Li, A. Xiao, S. M. Xu","doi":"10.1080/08120099.2023.2172609","DOIUrl":null,"url":null,"abstract":"Abstract Late Mesozoic mafic dykes, which are widely developed in the North Qinling Orogenic Belt (NQOB), include abundant geodynamic information. This paper describes the mafic dykes that intrude the Late Jurassic granite in the Dayu and Kuyu areas, and reports important petrological constraints for the late Mesozoic tectonic transition from compression to extension in the NQOB. Three zircon U–Pb results show that the minimum ages of the mafic dykes are 139.8 ± 1.4 Ma, 137.4 ± 1.7 Ma and 133.4 ± 0.9 Ma, indicating that the emplacement age of the Dayu and Kuyu mafic dykes is 140–133 Ma. Petrogeochemical analyses suggest that the mafic dykes belong to the high-K calc-alkaline shoshonite series with low SiO2 (46.93–56.73 wt%), MgO (1.88–9.10 wt%) and TiO2 (1.17–1.82 wt%), and high Al2O3 (13.98–17.46 wt%), TFe2O3 (7.81–10.92 wt%) and K2O (1.28–4.78 wt%). The mafic dykes are enriched in large ion lithophile elements (e.g. Rb, Ba, K, La, Sr) and depleted in high-field-strength elements (e.g. Nb, Ta, Zr, Ti). These samples have the right-sloping chondrite-normalised rare earth element patterns, which suggest light rare earth element enrichment and heavy rare earth elements depletion with no obvious Eu anomalies (δEu = 0.94–1.11). The I Sr, ε Nd(t), ε Hf (t) and T DM2(crust) values are 0.7056–0.7060, −10.60 to −5.98, −14.1 to −2.8, and 1382.4 ± 25.1 to 2081.9 ± 47.6 Ma, respectively. Both elemental and isotopic geochemistry show that the formation of Dayu and Kuyu mafic dykes is due to the partial decompression melting of previously enriched lithospheric mantle during a delamination process. The mafic dykes have undergone fractionation crystallisation of Mg–Fe phase minerals during magma ascent, accompanied by some crustal contamination. Combined with the regional tectonic setting, we suggested that the NQOB experienced intra-continental extension during the Early Cretaceous. KEY POINTS Early Cretaceous (140–133 Ma) mafic dykes have been discovered in the middle part of the North Qinling Orogenic Belt. The remote effect of the Paleo-Pacific Plate subduction has reached the middle of the North Qinling Orogenic Belt. The North Qinling Orogenic Belt entered the extensional stage in the Early Cretaceous (140–133 Ma).","PeriodicalId":8601,"journal":{"name":"Australian Journal of Earth Sciences","volume":"70 1","pages":"567 - 584"},"PeriodicalIF":1.2000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08120099.2023.2172609","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Late Mesozoic mafic dykes, which are widely developed in the North Qinling Orogenic Belt (NQOB), include abundant geodynamic information. This paper describes the mafic dykes that intrude the Late Jurassic granite in the Dayu and Kuyu areas, and reports important petrological constraints for the late Mesozoic tectonic transition from compression to extension in the NQOB. Three zircon U–Pb results show that the minimum ages of the mafic dykes are 139.8 ± 1.4 Ma, 137.4 ± 1.7 Ma and 133.4 ± 0.9 Ma, indicating that the emplacement age of the Dayu and Kuyu mafic dykes is 140–133 Ma. Petrogeochemical analyses suggest that the mafic dykes belong to the high-K calc-alkaline shoshonite series with low SiO2 (46.93–56.73 wt%), MgO (1.88–9.10 wt%) and TiO2 (1.17–1.82 wt%), and high Al2O3 (13.98–17.46 wt%), TFe2O3 (7.81–10.92 wt%) and K2O (1.28–4.78 wt%). The mafic dykes are enriched in large ion lithophile elements (e.g. Rb, Ba, K, La, Sr) and depleted in high-field-strength elements (e.g. Nb, Ta, Zr, Ti). These samples have the right-sloping chondrite-normalised rare earth element patterns, which suggest light rare earth element enrichment and heavy rare earth elements depletion with no obvious Eu anomalies (δEu = 0.94–1.11). The I Sr, ε Nd(t), ε Hf (t) and T DM2(crust) values are 0.7056–0.7060, −10.60 to −5.98, −14.1 to −2.8, and 1382.4 ± 25.1 to 2081.9 ± 47.6 Ma, respectively. Both elemental and isotopic geochemistry show that the formation of Dayu and Kuyu mafic dykes is due to the partial decompression melting of previously enriched lithospheric mantle during a delamination process. The mafic dykes have undergone fractionation crystallisation of Mg–Fe phase minerals during magma ascent, accompanied by some crustal contamination. Combined with the regional tectonic setting, we suggested that the NQOB experienced intra-continental extension during the Early Cretaceous. KEY POINTS Early Cretaceous (140–133 Ma) mafic dykes have been discovered in the middle part of the North Qinling Orogenic Belt. The remote effect of the Paleo-Pacific Plate subduction has reached the middle of the North Qinling Orogenic Belt. The North Qinling Orogenic Belt entered the extensional stage in the Early Cretaceous (140–133 Ma).
期刊介绍:
Australian Journal of Earth Sciences publishes peer-reviewed research papers as well as significant review articles of general interest to geoscientists. The Journal covers the whole field of earth science including basin studies, regional geophysical studies and metallogeny. There is usually a thematic issue each year featuring a selection of papers on a particular area of earth science. Shorter papers are encouraged and are given priority in publication. Critical discussion of recently published papers is also encouraged.