C. Sringarm, S. Numthuam, S. Salabsee, S. Ditudompo, T. Kunanopparat, S. Rungchang
{"title":"Prediction of Freshness Quality and Phosphate Residue of White Shrimp Products Using Near-Infrared Spectroscopy","authors":"C. Sringarm, S. Numthuam, S. Salabsee, S. Ditudompo, T. Kunanopparat, S. Rungchang","doi":"10.18502/jfqhc.9.2.10645","DOIUrl":null,"url":null,"abstract":"Background: The manufacturing of frozen shrimp is an important industry for the economy of Thailand. The objective of this study was to use Near-Infrared (NIR) spectroscopy to determine the freshness quality, including Total Volatile Basic Nitrogen (TVB-N) and Water Holding Capacity (WHC) of white shrimp (whole and chopped shrimp) and phosphate residues of shrimp. \nMethods: Sixty white shrimp samples of a size of 70-80 shrimp/kg were stored at 4 ˚C. The sample was divided into two groups by soaking in two kinds of phosphate solutions, including Sodium Tripolyphosphate (STPP) and Mixed Phosphate (NAN101). The samples were evaluated using NIR which was performed before freezing and seven days after freezing. Calibration models of the freshness and phosphate residues of fresh and frozen shrimp products were built by Partial Least Square (PLS) regression between the spectral data and the reference methods. \nResults: Satisfactory PLS results were obtained from the calibration model of TVB-N of chopped shrimp with a correlation coefficient (R) of 0.94 and Ratio of Prediction to Deviation (RPD) of 3.07. However, the NIR data indicated an unreliable prediction for the WHC (R<0.5). For the determination of phosphate residuals from STPP and NAN 101, the best calibration results were R>0.94 and RPD>3.00. \nConclusion: The NIR spectroscopy was feasible for monitoring the TVB-N as well as phosphate residues of shrimp products.","PeriodicalId":37437,"journal":{"name":"Journal of Food Quality and Hazards Control","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Quality and Hazards Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jfqhc.9.2.10645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
Background: The manufacturing of frozen shrimp is an important industry for the economy of Thailand. The objective of this study was to use Near-Infrared (NIR) spectroscopy to determine the freshness quality, including Total Volatile Basic Nitrogen (TVB-N) and Water Holding Capacity (WHC) of white shrimp (whole and chopped shrimp) and phosphate residues of shrimp.
Methods: Sixty white shrimp samples of a size of 70-80 shrimp/kg were stored at 4 ˚C. The sample was divided into two groups by soaking in two kinds of phosphate solutions, including Sodium Tripolyphosphate (STPP) and Mixed Phosphate (NAN101). The samples were evaluated using NIR which was performed before freezing and seven days after freezing. Calibration models of the freshness and phosphate residues of fresh and frozen shrimp products were built by Partial Least Square (PLS) regression between the spectral data and the reference methods.
Results: Satisfactory PLS results were obtained from the calibration model of TVB-N of chopped shrimp with a correlation coefficient (R) of 0.94 and Ratio of Prediction to Deviation (RPD) of 3.07. However, the NIR data indicated an unreliable prediction for the WHC (R<0.5). For the determination of phosphate residuals from STPP and NAN 101, the best calibration results were R>0.94 and RPD>3.00.
Conclusion: The NIR spectroscopy was feasible for monitoring the TVB-N as well as phosphate residues of shrimp products.
期刊介绍:
Journal of Food Quality and Hazards Control (J. Food Qual. Hazards Control) is an international peer-reviewed quarterly journal that aims at publishing of high quality articles involved in food quality, food hygiene, food safety, and food control which scientists from all over the world may submit their manuscript. This academic journal aims to improve international exchange of new findings and recent developments in all aspects of agricultural and biological sciences. This free of charge journal is published in both online and print forms and welcomes the manuscripts that fulfill the general criteria of novelty and scientific importance. Among the most significant objectives of Journal of Food Quality and Hazards Control are to ensure that the articles reflect a wide range of topics regarding journal scopes; to do a fair, scientific, fast, as well as high quality peer-review process; to provide a wide and diverse geographical coverage of articles around the world; and to publish the articles having a trustable resource of scientific information for the audiences. The types of acceptable submissions include original article, review article, short communication, letter to the editor, case report, editorial, as well as book review. Journal of Food Quality and Hazards Control is an official journal of Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.