High-Resolution Imaging in the Visible with Faint Reference Stars on Large Ground-Based Telescopes

IF 1.5 Q3 ASTRONOMY & ASTROPHYSICS
C. Mackay
{"title":"High-Resolution Imaging in the Visible with Faint Reference Stars on Large Ground-Based Telescopes","authors":"C. Mackay","doi":"10.1142/S2251171719500156","DOIUrl":null,"url":null,"abstract":"Astronomers working with faint targets will benefit greatly from improved image quality on current and planned ground-based telescopes. At present, most adaptive optic systems are targeted at the highest resolution with bright guide stars. We demonstrate a significantly new approach for measuring low-order wavefront errors by using a pupil-plane curvature wavefront sensor design. By making low order wavefront corrections, we can deliver significant improvements in image resolution in the visible on telescopes in the 2.5–8.2 m range on good astronomical sites. As a minimum, the angular resolution will be improved by a factor of 2.5–3 under any reasonable conditions and, with further correction and image selection, even sharper images may be obtained routinely. We re-examine many of the assumptions about what may be achieved with faint reference stars to achieve this performance. We show how our new design of curvature wavefront sensor combined with wavefront fitting routines based on radon transforms allow this performance to be achieved routinely. Simulations over a wide range of conditions match the performance already achieved in runs with earlier versions of the hardware described. Reference stars significantly fainter than I [Formula: see text]17[Formula: see text]m may be used routinely to produce images with a near diffraction limited core and halo much smaller than that delivered by natural seeing.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171719500156","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251171719500156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

Astronomers working with faint targets will benefit greatly from improved image quality on current and planned ground-based telescopes. At present, most adaptive optic systems are targeted at the highest resolution with bright guide stars. We demonstrate a significantly new approach for measuring low-order wavefront errors by using a pupil-plane curvature wavefront sensor design. By making low order wavefront corrections, we can deliver significant improvements in image resolution in the visible on telescopes in the 2.5–8.2 m range on good astronomical sites. As a minimum, the angular resolution will be improved by a factor of 2.5–3 under any reasonable conditions and, with further correction and image selection, even sharper images may be obtained routinely. We re-examine many of the assumptions about what may be achieved with faint reference stars to achieve this performance. We show how our new design of curvature wavefront sensor combined with wavefront fitting routines based on radon transforms allow this performance to be achieved routinely. Simulations over a wide range of conditions match the performance already achieved in runs with earlier versions of the hardware described. Reference stars significantly fainter than I [Formula: see text]17[Formula: see text]m may be used routinely to produce images with a near diffraction limited core and halo much smaller than that delivered by natural seeing.
在大型地面望远镜上用暗淡的参考星进行可见光的高分辨率成像
研究微弱目标的天文学家将从现有和计划中的地面望远镜改善的图像质量中受益匪浅。目前,大多数自适应光学系统都是在明亮的导星下以最高分辨率为目标。我们展示了一个重要的新方法来测量低阶波前误差的瞳孔-平面曲率波前传感器设计。通过进行低阶波前校正,我们可以在2.5-8.2 m范围内的天文望远镜上显著提高可见光图像的分辨率。在任何合理的条件下,角分辨率至少可以提高2.5-3倍,并且通过进一步的校正和图像选择,可以获得更清晰的图像。我们重新检查了许多关于暗参星可能实现的假设,以实现这种性能。我们展示了我们的曲率波前传感器的新设计与基于氡变换的波前拟合程序相结合,使这种性能能够常规实现。在各种条件下的模拟与所描述的早期硬件版本在运行中已经达到的性能相匹配。参考星明显暗于1[公式:见文]17[公式:见文]m通常可以用来产生具有接近衍射极限的核心和光晕的图像,这些图像比自然观测提供的图像要小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Astronomical Instrumentation
Journal of Astronomical Instrumentation ASTRONOMY & ASTROPHYSICS-
CiteScore
2.30
自引率
7.70%
发文量
19
期刊介绍: The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信