{"title":"Application of Capacities to Space-Time Fractional Dissipative Equations II: Carleson Measure Characterization for Lq(ℝ+n+1,μ) L^q (\\mathbb{R}_ + ^{n + 1} ,\\mu ) −Extension","authors":"Pengtao Li, Zhichun Zhai","doi":"10.1515/anona-2021-0232","DOIUrl":null,"url":null,"abstract":"Abstract This paper provides the Carleson characterization of the extension of fractional Sobolev spaces and Lebesgue spaces to Lq(ℝ+n+1,μ) L^q (\\mathbb{R}_ + ^{n + 1} ,\\mu ) via space-time fractional equations. For the extension of fractional Sobolev spaces, preliminary results including estimates, involving the fractional capacity, measures, the non-tangential maximal function, and an estimate of the Riesz integral of the space-time fractional heat kernel, are provided. For the extension of Lebesgue spaces, a new Lp–capacity associated to the spatial-time fractional equations is introduced. Then, some basic properties of the Lp–capacity, including its dual form, the Lp–capacity of fractional parabolic balls, strong and weak type inequalities, are established.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0232","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract This paper provides the Carleson characterization of the extension of fractional Sobolev spaces and Lebesgue spaces to Lq(ℝ+n+1,μ) L^q (\mathbb{R}_ + ^{n + 1} ,\mu ) via space-time fractional equations. For the extension of fractional Sobolev spaces, preliminary results including estimates, involving the fractional capacity, measures, the non-tangential maximal function, and an estimate of the Riesz integral of the space-time fractional heat kernel, are provided. For the extension of Lebesgue spaces, a new Lp–capacity associated to the spatial-time fractional equations is introduced. Then, some basic properties of the Lp–capacity, including its dual form, the Lp–capacity of fractional parabolic balls, strong and weak type inequalities, are established.