Application of Capacities to Space-Time Fractional Dissipative Equations II: Carleson Measure Characterization for Lq(ℝ+n+1,μ) L^q (\mathbb{R}_ + ^{n + 1} ,\mu ) −Extension

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Pengtao Li, Zhichun Zhai
{"title":"Application of Capacities to Space-Time Fractional Dissipative Equations II: Carleson Measure Characterization for Lq(ℝ+n+1,μ) L^q (\\mathbb{R}_ + ^{n + 1} ,\\mu ) −Extension","authors":"Pengtao Li, Zhichun Zhai","doi":"10.1515/anona-2021-0232","DOIUrl":null,"url":null,"abstract":"Abstract This paper provides the Carleson characterization of the extension of fractional Sobolev spaces and Lebesgue spaces to Lq(ℝ+n+1,μ) L^q (\\mathbb{R}_ + ^{n + 1} ,\\mu ) via space-time fractional equations. For the extension of fractional Sobolev spaces, preliminary results including estimates, involving the fractional capacity, measures, the non-tangential maximal function, and an estimate of the Riesz integral of the space-time fractional heat kernel, are provided. For the extension of Lebesgue spaces, a new Lp–capacity associated to the spatial-time fractional equations is introduced. Then, some basic properties of the Lp–capacity, including its dual form, the Lp–capacity of fractional parabolic balls, strong and weak type inequalities, are established.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0232","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This paper provides the Carleson characterization of the extension of fractional Sobolev spaces and Lebesgue spaces to Lq(ℝ+n+1,μ) L^q (\mathbb{R}_ + ^{n + 1} ,\mu ) via space-time fractional equations. For the extension of fractional Sobolev spaces, preliminary results including estimates, involving the fractional capacity, measures, the non-tangential maximal function, and an estimate of the Riesz integral of the space-time fractional heat kernel, are provided. For the extension of Lebesgue spaces, a new Lp–capacity associated to the spatial-time fractional equations is introduced. Then, some basic properties of the Lp–capacity, including its dual form, the Lp–capacity of fractional parabolic balls, strong and weak type inequalities, are established.
容量在时空分数耗散方程中的应用Ⅱ:Lq的Carleson测度表征(ℝ+n+1,μ)L^q(\mathbb{R}_+^{n+1},\mu)−扩展
摘要本文给出了分数阶Sobolev空间和Lebesgue空间向Lq的扩张的Carleson刻画(ℝ+n+1,μ)L^q(\mathbb{R}_+^{n+1},\mu)。对于分数Sobolev空间的扩展,提供了初步结果,包括估计,包括分数容量、测度、非切向最大函数和时空分数热核的Riesz积分的估计。对于Lebesgue空间的扩展,引入了一种新的与空间-时间分数方程相关的Lp–容量。然后,建立了Lp–容量的一些基本性质,包括它的对偶形式,分数抛物球的Lp–电容,强型和弱型不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信