Ravi Butola, R. Singh, N. Choudhary, K. Mer, J. Bhaskar, R. Singari
{"title":"Fabrication of FSW Tool Pins Through Turning of H13 Tool Steel: A Comparative Analysis for Residual Stresses","authors":"Ravi Butola, R. Singh, N. Choudhary, K. Mer, J. Bhaskar, R. Singari","doi":"10.1142/s0219686722500135","DOIUrl":null,"url":null,"abstract":"In the present research, measurement of residual stress induced during turning and threading operations for the fabrication of two types of pin profiled friction stir processing/welding (FSP/FSW) tools, i.e. cylindrical profiled pin tool and cylindrical threaded profiled pin tool, is being dealt with. Workpiece was chosen to be H13 tool steel with a diameter of 22[Formula: see text]mm and 110[Formula: see text]mm length. Turning and threading was done on CNC machine tools using CNMG 12404-THM uncoated tungsten carbide cutting tool. For residual stress measurement of the workpieces, an XRD-based Pulsetec[Formula: see text]-X360n portable residual stress analyzer setup was used. The experimental results show that the cylindrical pin profile tool had a compressive residual stress of [Formula: see text][Formula: see text]MPa and compressive residual shear stress of [Formula: see text][Formula: see text]MPa, while the cylindrical threaded pin profile tool had a compressive residual stress of [Formula: see text][Formula: see text]MPa (51.8% more) and compressive residual shear stress of [Formula: see text][Formula: see text]MPa (40% less). It has been concluded that due to threading operation on the cylindrical threaded pin profile, the value of residual stress is more in it, and since the stress is compressive in nature, it would have a better positive impact while doing FSP/FSW than that of the cylindrical profiled pin tool.","PeriodicalId":44935,"journal":{"name":"Journal of Advanced Manufacturing Systems","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Manufacturing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219686722500135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 4
Abstract
In the present research, measurement of residual stress induced during turning and threading operations for the fabrication of two types of pin profiled friction stir processing/welding (FSP/FSW) tools, i.e. cylindrical profiled pin tool and cylindrical threaded profiled pin tool, is being dealt with. Workpiece was chosen to be H13 tool steel with a diameter of 22[Formula: see text]mm and 110[Formula: see text]mm length. Turning and threading was done on CNC machine tools using CNMG 12404-THM uncoated tungsten carbide cutting tool. For residual stress measurement of the workpieces, an XRD-based Pulsetec[Formula: see text]-X360n portable residual stress analyzer setup was used. The experimental results show that the cylindrical pin profile tool had a compressive residual stress of [Formula: see text][Formula: see text]MPa and compressive residual shear stress of [Formula: see text][Formula: see text]MPa, while the cylindrical threaded pin profile tool had a compressive residual stress of [Formula: see text][Formula: see text]MPa (51.8% more) and compressive residual shear stress of [Formula: see text][Formula: see text]MPa (40% less). It has been concluded that due to threading operation on the cylindrical threaded pin profile, the value of residual stress is more in it, and since the stress is compressive in nature, it would have a better positive impact while doing FSP/FSW than that of the cylindrical profiled pin tool.
期刊介绍:
Journal of Advanced Manufacturing Systems publishes original papers pertaining to state-of-the-art research and development, product development, process planning, resource planning, applications, and tools in the areas related to advanced manufacturing. The journal addresses: - Manufacturing Systems - Collaborative Design - Collaborative Decision Making - Product Simulation - In-Process Modeling - Resource Planning - Resource Simulation - Tooling Design - Planning and Scheduling - Virtual Reality Technologies and Applications - CAD/CAE/CAM Systems - Networking and Distribution - Supply Chain Management