{"title":"On the blow-up analysis at collapsing poles for solutions of singular Liouville-type equations","authors":"G. Tarantello","doi":"10.1080/03605302.2022.2139725","DOIUrl":null,"url":null,"abstract":"Abstract We analyze a blow-up sequence of solutions for Liouville-type equations involving Dirac measures with “collapsing” poles. We consider the case where blow-up occurs exactly at a point where the poles coalesce. After proving that a” quantization” property still holds for the” blow-up mass,” we obtain precise pointwise estimates when blow-up occurs with the least blow-up mass. Interestingly, such estimates express the exact analogue of those previously obtained for solutions of “regular” Liouville equations where the “collapsing” Dirac measures are neglected. Such information will be used in a forthcoming paper to describe the asymptotic behavior of minimizers of the Donaldson functional introduced by Goncalves and Uhlenbeck in 2007, yielding to mean curvature 1-immersions of surfaces into hyperbolic 3-manifolds.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"48 1","pages":"150 - 181"},"PeriodicalIF":2.1000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2139725","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We analyze a blow-up sequence of solutions for Liouville-type equations involving Dirac measures with “collapsing” poles. We consider the case where blow-up occurs exactly at a point where the poles coalesce. After proving that a” quantization” property still holds for the” blow-up mass,” we obtain precise pointwise estimates when blow-up occurs with the least blow-up mass. Interestingly, such estimates express the exact analogue of those previously obtained for solutions of “regular” Liouville equations where the “collapsing” Dirac measures are neglected. Such information will be used in a forthcoming paper to describe the asymptotic behavior of minimizers of the Donaldson functional introduced by Goncalves and Uhlenbeck in 2007, yielding to mean curvature 1-immersions of surfaces into hyperbolic 3-manifolds.
期刊介绍:
This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.