On the blow-up analysis at collapsing poles for solutions of singular Liouville-type equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
G. Tarantello
{"title":"On the blow-up analysis at collapsing poles for solutions of singular Liouville-type equations","authors":"G. Tarantello","doi":"10.1080/03605302.2022.2139725","DOIUrl":null,"url":null,"abstract":"Abstract We analyze a blow-up sequence of solutions for Liouville-type equations involving Dirac measures with “collapsing” poles. We consider the case where blow-up occurs exactly at a point where the poles coalesce. After proving that a” quantization” property still holds for the” blow-up mass,” we obtain precise pointwise estimates when blow-up occurs with the least blow-up mass. Interestingly, such estimates express the exact analogue of those previously obtained for solutions of “regular” Liouville equations where the “collapsing” Dirac measures are neglected. Such information will be used in a forthcoming paper to describe the asymptotic behavior of minimizers of the Donaldson functional introduced by Goncalves and Uhlenbeck in 2007, yielding to mean curvature 1-immersions of surfaces into hyperbolic 3-manifolds.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2139725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We analyze a blow-up sequence of solutions for Liouville-type equations involving Dirac measures with “collapsing” poles. We consider the case where blow-up occurs exactly at a point where the poles coalesce. After proving that a” quantization” property still holds for the” blow-up mass,” we obtain precise pointwise estimates when blow-up occurs with the least blow-up mass. Interestingly, such estimates express the exact analogue of those previously obtained for solutions of “regular” Liouville equations where the “collapsing” Dirac measures are neglected. Such information will be used in a forthcoming paper to describe the asymptotic behavior of minimizers of the Donaldson functional introduced by Goncalves and Uhlenbeck in 2007, yielding to mean curvature 1-immersions of surfaces into hyperbolic 3-manifolds.
奇异Liouville型方程解的崩溃极点爆破分析
摘要本文分析了具有“坍缩”极点的Dirac测度liouville型方程的爆破解序列。我们考虑爆炸恰好发生在两极会合点的情况。在证明了“爆炸质量”的“量子化”性质仍然成立之后,我们获得了爆炸发生在最小爆炸质量时的精确的逐点估计。有趣的是,这种估计表达了先前对“规则”刘维尔方程解的精确模拟,其中“坍缩”狄拉克测度被忽略。这些信息将在即将发表的一篇论文中用于描述由Goncalves和Uhlenbeck在2007年引入的Donaldson泛函的最小值的渐近行为,使曲面在双曲3流形中的平均曲率为1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信