On the annihilators of formal local cohomology modules

IF 0.6 4区 数学 Q3 MATHEMATICS
S. Rezaei
{"title":"On the annihilators of formal local cohomology modules","authors":"S. Rezaei","doi":"10.14492/hokmj/1550480649","DOIUrl":null,"url":null,"abstract":"Let a denote an ideal in a commutative Noetherian local ring (R,m) and M a non-zero finitely generated R-module of dimension d. Let d := dim(M/aM). In this paper we calculate the annihilator of the top formal local cohomology module Fda(M). In fact, we prove that AnnR(F d a(M)) = AnnR(M/UR(a,M)), where UR(a,M) := ∪{N : N ⩽ M and dim(N/aN) < dim(M/aM)}. We give a description of UR(a,M) and we will show that AnnR(F d a(M)) = AnnR(M/ ∩pj∈AsshRM∩V(a) Nj), where 0 = ∩n j=1 Nj denotes a reduced primary decomposition of the zero submodule 0 in M and Nj is a pj-primary submodule of M , for all j = 1, . . . , n. Also, we determine the radical of the annihilator of Fda(M). We will prove that √ AnnR(Fa(M)) = AnnR(M/GR(a,M)), where GR(a,M) denotes the largest submodule of M such that AsshR(M) ∩ V(a) ⊆ AssR(M/GR(a,M)) and AsshR(M) denotes the set {p ∈ AssM : dimR/p = dimM}.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.14492/hokmj/1550480649","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/1550480649","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let a denote an ideal in a commutative Noetherian local ring (R,m) and M a non-zero finitely generated R-module of dimension d. Let d := dim(M/aM). In this paper we calculate the annihilator of the top formal local cohomology module Fda(M). In fact, we prove that AnnR(F d a(M)) = AnnR(M/UR(a,M)), where UR(a,M) := ∪{N : N ⩽ M and dim(N/aN) < dim(M/aM)}. We give a description of UR(a,M) and we will show that AnnR(F d a(M)) = AnnR(M/ ∩pj∈AsshRM∩V(a) Nj), where 0 = ∩n j=1 Nj denotes a reduced primary decomposition of the zero submodule 0 in M and Nj is a pj-primary submodule of M , for all j = 1, . . . , n. Also, we determine the radical of the annihilator of Fda(M). We will prove that √ AnnR(Fa(M)) = AnnR(M/GR(a,M)), where GR(a,M) denotes the largest submodule of M such that AsshR(M) ∩ V(a) ⊆ AssR(M/GR(a,M)) and AsshR(M) denotes the set {p ∈ AssM : dimR/p = dimM}.
关于形式局部上同模的湮灭子
设a表示交换诺瑟局部环(R,m)中的理想,m表示维数为d的非零有限生成R模。设d:= dim(m /aM)。本文计算了上形式局部上同模Fda(M)的湮灭子。事实上,我们证明了AnnR(F d a(M)) = AnnR(M/UR(a,M)),其中UR(a,M):=∪{N: N≤M and dim(N/aN) < dim(M/aM)}。我们给出了UR(a,M)的一个描述,并且我们将证明AnnR(F d a(M)) = AnnR(M/∩pj∈AsshRM∩V(a) Nj),其中0 =∩n j=1 Nj表示M中的零子模块0的一个约简初分解,并且Nj是M的一个pj-主子模块,对于所有j=1,…, n。同时,我们确定了Fda(M)湮灭子的原子量。我们将证明√AnnR(Fa(M)) = AnnR(M/GR(a,M)),其中GR(a,M)表示M的最大子模块,使得AssR(M)∩V(a)≤AssR(M/GR(a,M)),且AssR(M)表示集合{p∈AssM: dimR/p = dimM}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信