General energy decay and exponential instability to a nonlinear dissipative-dispersive viscoelastic Petrovsky equation

IF 0.4 Q4 MATHEMATICS
A. Peyravi
{"title":"General energy decay and exponential instability to a nonlinear dissipative-dispersive viscoelastic Petrovsky equation","authors":"A. Peyravi","doi":"10.30495/JME.V0I0.1451","DOIUrl":null,"url":null,"abstract":"This work is concerned with the initial boundary valueproblem for a nonlinear viscoelastic Petrovsky wave equation$$u_{tt}+\\Delta^{2}u-\\int_{0}^{t}g(t-\\tau)\\Delta^{2}u(\\tau)d\\tau-\\Delta u_{t}-\\Delta u_{tt}+u_{t}|u_{t}|^{m-1}=u|u|^{p-1}.$$ Under suitable conditions on the relaxation function $g$,  the globalexistence of solutions is obtained without any relation between$m$ and $p$. The uniform decay of solutions is proved by adaptingthe perturbed energy method. For $p>m$ and sufficient conditionson $g$, an unboundedness result of solutions is also obtained.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V0I0.1451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work is concerned with the initial boundary valueproblem for a nonlinear viscoelastic Petrovsky wave equation$$u_{tt}+\Delta^{2}u-\int_{0}^{t}g(t-\tau)\Delta^{2}u(\tau)d\tau-\Delta u_{t}-\Delta u_{tt}+u_{t}|u_{t}|^{m-1}=u|u|^{p-1}.$$ Under suitable conditions on the relaxation function $g$,  the globalexistence of solutions is obtained without any relation between$m$ and $p$. The uniform decay of solutions is proved by adaptingthe perturbed energy method. For $p>m$ and sufficient conditionson $g$, an unboundedness result of solutions is also obtained.
非线性耗散-色散粘弹性Petrovsky方程的一般能量衰减和指数不稳定性
本文研究了非线性粘弹性Petrovsky波动方程$$u_{tt}+\Delta的初边值问题^{2}u-\int_{0}^{t}g(t-\tau)\增量^{2}u(\tau)d\tau-\Δu_{t}-\Δu_{tt}+u_{t}|u_{t}|^{m-1}=u|u|^{p-1}$$在松弛函数$g$的适当条件下,在$m$和$p$之间没有任何关系的情况下,得到了解的全局存在性。采用摄动能量法证明了解的一致衰减性。对于$p>m$和$g$的充分条件,还得到了解的无界性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
68
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信