{"title":"Study on the random walk classification algorithm of polyant colony","authors":"Wenhai Qiu","doi":"10.1515/comp-2022-0248","DOIUrl":null,"url":null,"abstract":"Abstract With the sustained and healthy development of economy, saving energy and reducing consumption and improving energy utilization rate is a major task that enterprises need to solve. With the complex and large-scale chemical process, the heat exchange network has become complex and diverse. For more and more complex and large-scale industrial heat exchange networks, there are many different kinds of heat exchangers, the flow is complex, so the heat exchange network presents a high degree of complexity, a node status change; its disturbance transfer will influence the stability of other nodes associated with it, because of the system coupling, thus affecting the controllability and reliability of the whole heat exchanger network. Process optimization design of heat exchange network is one of the main methods of energy saving in the industrial field. As a typical simulated evolutionary algorithm in swarm intelligence algorithm, ant colony algorithm combined with random walk classification algorithm, this article proposes an optimized heat transfer network based on multi-ant colony random walk classification algorithm. The heat exchanger was abstracted as a node, and the heat exchanger pipeline was abstracted as a side. According to the maximum geometric multiplicity of the eigenvalue of the adjacency matrix and the linear correlation row vector of the matrix, and combining the importance of the edge of the heat exchange network with the controllable range of the driving edge, the optimal control driving edge of the heat exchange network is identified. The results show that compared with the traditional heat exchanger, the size of the enhanced heat transfer equipment and the influence of pressure drop change. Compared with the results of the size of the heat exchanger strengthening heat transfer equipment and the stepwise optimization of the heat exchange network in this study, the cost of public engineering is reduced by 5.98% and the total cost is reduced by 8.83%.","PeriodicalId":43014,"journal":{"name":"Open Computer Science","volume":"12 1","pages":"378 - 388"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With the sustained and healthy development of economy, saving energy and reducing consumption and improving energy utilization rate is a major task that enterprises need to solve. With the complex and large-scale chemical process, the heat exchange network has become complex and diverse. For more and more complex and large-scale industrial heat exchange networks, there are many different kinds of heat exchangers, the flow is complex, so the heat exchange network presents a high degree of complexity, a node status change; its disturbance transfer will influence the stability of other nodes associated with it, because of the system coupling, thus affecting the controllability and reliability of the whole heat exchanger network. Process optimization design of heat exchange network is one of the main methods of energy saving in the industrial field. As a typical simulated evolutionary algorithm in swarm intelligence algorithm, ant colony algorithm combined with random walk classification algorithm, this article proposes an optimized heat transfer network based on multi-ant colony random walk classification algorithm. The heat exchanger was abstracted as a node, and the heat exchanger pipeline was abstracted as a side. According to the maximum geometric multiplicity of the eigenvalue of the adjacency matrix and the linear correlation row vector of the matrix, and combining the importance of the edge of the heat exchange network with the controllable range of the driving edge, the optimal control driving edge of the heat exchange network is identified. The results show that compared with the traditional heat exchanger, the size of the enhanced heat transfer equipment and the influence of pressure drop change. Compared with the results of the size of the heat exchanger strengthening heat transfer equipment and the stepwise optimization of the heat exchange network in this study, the cost of public engineering is reduced by 5.98% and the total cost is reduced by 8.83%.