Applications of New Double Integral Transform (Laplace–Sumudu Transform) in Mathematical Physics

Q3 Mathematics
Shams A. Ahmed
{"title":"Applications of New Double Integral Transform (Laplace–Sumudu Transform) in Mathematical Physics","authors":"Shams A. Ahmed","doi":"10.1155/2021/6625247","DOIUrl":null,"url":null,"abstract":"The primary purpose of this research is to demonstrate an efficient replacement of double transform called the double Laplace–Sumudu transform (DLST) and prove some related theorems of the new double transform. Also, we will discuss the fundamental properties of the double Laplace–Sumudu transform of some basic functions. Then, by utilizing those outcomes, we will apply it to the partial differential equations to show its simplicity, efficiency, and high accuracy.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":"2021 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6625247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

The primary purpose of this research is to demonstrate an efficient replacement of double transform called the double Laplace–Sumudu transform (DLST) and prove some related theorems of the new double transform. Also, we will discuss the fundamental properties of the double Laplace–Sumudu transform of some basic functions. Then, by utilizing those outcomes, we will apply it to the partial differential equations to show its simplicity, efficiency, and high accuracy.
新的二重积分变换(拉普拉斯-苏木都变换)在数学物理中的应用
本研究的主要目的是证明一种有效的双变换替代方法,称为双拉普拉斯-苏姆杜变换(DLST),并证明新的双变换的一些相关定理。此外,我们还将讨论一些基本函数的二重拉普拉斯-苏姆杜变换的基本性质。然后,通过利用这些结果,我们将其应用于偏微分方程,以显示其简单、高效和高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
36
审稿时长
3.5 months
期刊介绍: Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信