A comparative study of physicochemical properties, antioxidant and enzyme inhibition activities of oils extracted from seeds of seven new sunflower (Helianthus annuus L.) lines
{"title":"A comparative study of physicochemical properties, antioxidant and enzyme inhibition activities of oils extracted from seeds of seven new sunflower (Helianthus annuus L.) lines","authors":"A. Abdalla","doi":"10.3906/bot-2107-32","DOIUrl":null,"url":null,"abstract":": This study was aimed to evaluate the physicochemical properties and chemical profile of seeds oil obtained from new seven sunflower ( Helianthus annuus L.) lines as well as their antioxidant and enzyme inhibition activity. The seeds powder was extracted by maceration in n-hexane. The oil content of the seven lines was ranged from 20.04% to 36.65% and was either yellow or pale yellow in color. No significant variations were observed on the refractive index (1.46 unit) of the oil. Oils of the seven lines were significantly ( p ˂ 0.05) different in their saponification values (32.13–282.66 mg KOH/g oil), peroxide values (1.76–13.26 mg KOH/g-oil), acid values (0.016–1.766 mg KOH/g oil) and free fatty acids content (6.26–72.23 mg KOH/g-oil). The chemical profile of the oil revealed that line APO42 contained the highest amount of monounsaturated fatty acids (55.9%). All the seven lines contained a considerable amount of linoleic acid (27.5%– 42.5%), and it represented the major compound in lines BOH3 (42.5%) and H1733 (39.8%). The variation was remarkable in their oleic acid content where the highest amount was observed in lines APO42 (55.4%) and APO43 (42.2%), respectively. Lines BOH3, APO43, APO41, and H1733 exerted the best total antioxidant activity in addition to their capacity to reduce Cu 2+ and Fe 3+ , while lines H1733 and APO43 had a metal chelating activity as well. All oils showed weak acetylcholinesterase, butyrylcholinesterase, α-glucosidase and α-amylase inhibitory activities. Only four lines showed considerable enzyme inhibitory activity against tyrosinase enzymes. Multivariance analysis suggested that linoleic acid participated in the observed biological activity of the oils. In conclusion, these new lines might contribute to the nutritional and phytotherapeutic properties of sunflower oil in addition to other industrial applications.","PeriodicalId":23369,"journal":{"name":"Turkish Journal of Botany","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3906/bot-2107-32","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
: This study was aimed to evaluate the physicochemical properties and chemical profile of seeds oil obtained from new seven sunflower ( Helianthus annuus L.) lines as well as their antioxidant and enzyme inhibition activity. The seeds powder was extracted by maceration in n-hexane. The oil content of the seven lines was ranged from 20.04% to 36.65% and was either yellow or pale yellow in color. No significant variations were observed on the refractive index (1.46 unit) of the oil. Oils of the seven lines were significantly ( p ˂ 0.05) different in their saponification values (32.13–282.66 mg KOH/g oil), peroxide values (1.76–13.26 mg KOH/g-oil), acid values (0.016–1.766 mg KOH/g oil) and free fatty acids content (6.26–72.23 mg KOH/g-oil). The chemical profile of the oil revealed that line APO42 contained the highest amount of monounsaturated fatty acids (55.9%). All the seven lines contained a considerable amount of linoleic acid (27.5%– 42.5%), and it represented the major compound in lines BOH3 (42.5%) and H1733 (39.8%). The variation was remarkable in their oleic acid content where the highest amount was observed in lines APO42 (55.4%) and APO43 (42.2%), respectively. Lines BOH3, APO43, APO41, and H1733 exerted the best total antioxidant activity in addition to their capacity to reduce Cu 2+ and Fe 3+ , while lines H1733 and APO43 had a metal chelating activity as well. All oils showed weak acetylcholinesterase, butyrylcholinesterase, α-glucosidase and α-amylase inhibitory activities. Only four lines showed considerable enzyme inhibitory activity against tyrosinase enzymes. Multivariance analysis suggested that linoleic acid participated in the observed biological activity of the oils. In conclusion, these new lines might contribute to the nutritional and phytotherapeutic properties of sunflower oil in addition to other industrial applications.
期刊介绍:
The Turkish Journal of Botany is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts manuscripts (in English) covering all areas of plant biology (including genetics, evolution, systematics, structure, function, development, diversity, conservation biology, biogeography, paleobotany, ontogeny, functional morphology, ecology, reproductive biology, and pollination biology), all levels of organisation (molecular to ecosystem), and all plant groups and allied organisms (algae, fungi, and lichens). Authors are required to frame their research questions and discuss their results in terms of major questions in plant biology. In general, papers that are too narrowly focused, purely descriptive, or broad surveys, or that contain only preliminary data or natural history, will not be considered (*).
The following types of article will be considered:
1. Research articles: Original research in various fields of botany will be evaluated as research articles.
2. Research notes: These include articles such as preliminary notes on a study or manuscripts on the morphological, anatomical, cytological, physiological, biochemical, and other properties of plant, algae, lichen and fungi species.
3. Reviews: Reviews of recent developments, improvements, discoveries, and ideas in various fields of botany.
4. Letters to the editor: These include opinions, comments relating to the publishing policy of the Turkish Journal of Botany, news, and suggestions. Letters should not exceed one journal page.
(*) 1. Raw floristic lists (of algae, lichens, fungi, or plants), species descriptions, chorological studies, and plant sociology studies without any additional independent approaches.
2. Comparative morphology and anatomy studies (that do not cover a family, tribe, subtribe, genus, subgenus, section, subsection, or species complexes with taxonomical problems) without one or more independent additional approaches such as phylogenetical, micromorphological, chromosomal and anatomical analyses.
3. Revisions of family, tribe, genus, subgenus, section, subsection, or species complexes without any original outputs such as taxonomical status changes, IUCN categories, and phenological and ecological analyses.
4. New taxa of all plants without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group.
New records of all plants without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group may be accepted for peer review if they contain 3 or more new records or taxonomical status update, such as lectotypification, new combinations, transfers, revivals and synonyms.
5. New taxa of algae, lichens, and fungi without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group.
New records of algae, lichens, and fungi without any additional independent approaches such as phylogenetical, ecological, chromosomal, chorological and correlational analyses in addition to a detailed macro- and micro-morphological descriptions with quality field and microscopic illustrations of taxonomically important structures and identification key in the taxonomic group may be accepted for peer review if they contain 5 or more new records or taxonomical status update, such as lectotypification, new combinations, transfers, revivals and synonyms.