Margenau-hill operator valued measures and joint measurability

IF 0.7 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS
Seeta Vasudevrao, H. Karthik, I. Reena, Sudha, A. R. Usha Devi
{"title":"Margenau-hill operator valued measures and joint measurability","authors":"Seeta Vasudevrao, H. Karthik, I. Reena, Sudha, A. R. Usha Devi","doi":"10.1142/S021974992250023X","DOIUrl":null,"url":null,"abstract":"We employ the Margenau-Hill (MH) correspondence rule for associating classical functions with quantum operators to construct quasi-probability mass functions. Using this we obtain the fuzzy one parameter quasi measurement operator (QMO) characterizing the incompatibility of non-commuting spin observables of qubits, qutrits and 2-qubit systems. Positivity of the fuzzy MH-QMO places upper bounds on the associated unsharpness parameter. This serves as a sufficient condition for measurement incompatibility of spin observables. We assess the amount of unsharpness required for joint measurability (compatibility) of the non-commuting qubit, qutrit and 2-qubit observables. We show that the {\\em degree of compatibility} of a pair of orthogonal qubit observables agrees perfectly with the necessary and sufficient conditions for joint measurability. Furthermore, we obtain analytical upper bounds on the unsharpness parameter specifying the range of joint measurability of spin components of qutrits and pairs of orthogonal spin observables of a 2-qubit system. Our results indicate that the measurement incompatibility of spin observables increases with Hilbert space dimension.","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S021974992250023X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We employ the Margenau-Hill (MH) correspondence rule for associating classical functions with quantum operators to construct quasi-probability mass functions. Using this we obtain the fuzzy one parameter quasi measurement operator (QMO) characterizing the incompatibility of non-commuting spin observables of qubits, qutrits and 2-qubit systems. Positivity of the fuzzy MH-QMO places upper bounds on the associated unsharpness parameter. This serves as a sufficient condition for measurement incompatibility of spin observables. We assess the amount of unsharpness required for joint measurability (compatibility) of the non-commuting qubit, qutrit and 2-qubit observables. We show that the {\em degree of compatibility} of a pair of orthogonal qubit observables agrees perfectly with the necessary and sufficient conditions for joint measurability. Furthermore, we obtain analytical upper bounds on the unsharpness parameter specifying the range of joint measurability of spin components of qutrits and pairs of orthogonal spin observables of a 2-qubit system. Our results indicate that the measurement incompatibility of spin observables increases with Hilbert space dimension.
Margenau-hill算子值测度与联合可测度性
利用经典函数与量子算子相关联的Margenau-Hill (MH)对应规则构造准概率质量函数。由此得到了表征量子位、量子位和双量子位系统非交换自旋观测不相容的模糊单参数拟测量算子(QMO)。模糊MH-QMO的正性为相关的不锐度参数设置了上界。这是自旋观测值测量不相容的充分条件。我们评估了非交换量子位、量子位和2量子位观察物的联合可测量性(兼容性)所需的不锐度。我们证明了一对正交量子比特观测值的{\em相容度}完全符合联合可测性的充分必要条件。在此基础上,给出了2-量子位元系统中自旋分量和正交自旋观测对的联合可测范围的非锐度参数的解析上界。结果表明,自旋观测值的测量不相容性随着希尔伯特空间维数的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Information
International Journal of Quantum Information 物理-计算机:理论方法
CiteScore
2.20
自引率
8.30%
发文量
36
审稿时长
10 months
期刊介绍: The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research: Quantum Cryptography Quantum Computation Quantum Communication Fundamentals of Quantum Mechanics Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信