Existence and stability for fractional parabolic integro-partial differential equations with fractional Brownian motion and nonlocal condition

IF 0.1 Q4 MATHEMATICS
M. El-Borai, K. El-Nadi, H. Ahmed, H. El-Owaidy, A. Ghanem, R. Sakthivel
{"title":"Existence and stability for fractional parabolic integro-partial differential equations with fractional Brownian motion and nonlocal condition","authors":"M. El-Borai, K. El-Nadi, H. Ahmed, H. El-Owaidy, A. Ghanem, R. Sakthivel","doi":"10.1080/25742558.2018.1460030","DOIUrl":null,"url":null,"abstract":"In this paper, a nonlinear fractional parabolic stochastic integro-partial differential equations with nonlocal effects driven by a fractional Brownian motion is considered. In particular, first we have formulated the suitable solution form for the fractional partial differential equations with nonlocal effects driven by fractional Brownian motion using a parabolic transform. Next, the existence and uniqueness of solutions are obtained for the fractional stochastic partial differential equations without any restrictions on the characteristic forms when the Hurst parameter of the fractional Brownian motion is less than half. Further, we investigate the stability of the solution for the considered problem. The required result is established by means of standard Picard’s iteration.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2018.1460030","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2018.1460030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, a nonlinear fractional parabolic stochastic integro-partial differential equations with nonlocal effects driven by a fractional Brownian motion is considered. In particular, first we have formulated the suitable solution form for the fractional partial differential equations with nonlocal effects driven by fractional Brownian motion using a parabolic transform. Next, the existence and uniqueness of solutions are obtained for the fractional stochastic partial differential equations without any restrictions on the characteristic forms when the Hurst parameter of the fractional Brownian motion is less than half. Further, we investigate the stability of the solution for the considered problem. The required result is established by means of standard Picard’s iteration.
具有分数布朗运动和非局部条件的分数抛物型积分偏微分方程的存在性和稳定性
研究了一类由分数阶布朗运动驱动的具有非局部效应的非线性分数阶抛物型随机积分偏微分方程。特别地,我们首先用抛物变换给出了分数阶布朗运动驱动的非局域效应分数阶偏微分方程的合适解形式。其次,得到了分数阶布朗运动的Hurst参数小于一半时,不受特征形式限制的分数阶随机偏微分方程解的存在唯一性。进一步,我们研究了所考虑问题的解的稳定性。采用标准皮卡德迭代法建立了所需结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信