Pilot test of polymer microsphere alternate surfactant flood (PMAS) with mixtures of anionic-cationic surfactants under harsh conditions in a sandstone reservoir
Yingcheng Li , Jun Jin , Zhiqing Su , Weidong Zhang , Xinning Bao , Baolun Niu , Changhua Yang , Xinyue Wu , Xiaodong Zhai , Li Zhang , Rong Guo , Yong Meng , Xiujuan He , Zhiqin Shen , Hui Zhang , Ou Sha
{"title":"Pilot test of polymer microsphere alternate surfactant flood (PMAS) with mixtures of anionic-cationic surfactants under harsh conditions in a sandstone reservoir","authors":"Yingcheng Li , Jun Jin , Zhiqing Su , Weidong Zhang , Xinning Bao , Baolun Niu , Changhua Yang , Xinyue Wu , Xiaodong Zhai , Li Zhang , Rong Guo , Yong Meng , Xiujuan He , Zhiqin Shen , Hui Zhang , Ou Sha","doi":"10.1016/j.ptlrs.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>The first pilot test of polyacrylamide microsphere alternate surfactant flood (PMAS) with mixtures of anionic-cationic surfactants (S<sub>a/c</sub>) was carried out for a high-temperature, high-salinity, and high-hardness sandstone reservoir to demonstrate the potential of this novel technique to improve oil recovery. A critical micelle concentration (CMC) of 4.82 mg/L, an ultralow interfacial tension (IFT) of 8 × 10<sup>−4</sup> mN/m, and a high oil solubilization of 22 were obtained. Static and dynamic adsorptions of S<sub>a/c</sub> on natural core containing 15 wt% clay were reduced to about 2.20 and 0.30 mg/g-core, respectively, with the addition of adsorption inhibitor (AI). Since June 2014, the pilot test of PMAS was carried out in a Sinopec reservoir with a temperature of 87 °C, a salinity of 260,393 mg/L, and a hardness of 6,401 mg/L. Twelve cycles of alternative injection of 0.0125 PV S<sub>a/c</sub> with a concentration of 0.1% and 0.0125 PV polyacrylamide microsphere with a concentration of 0.2% were conducted at an injection rate of 0.1 PV/yr, for a total of 0.3 PV chemical injection. As a result, the net daily oil production increased from 0 t to 6.5 t, and the water cut decreased from 96.3% to 93.8%, leading to an ultimate improved oil recovery of 6.3% original oil-in-place.</p></div>","PeriodicalId":19756,"journal":{"name":"Petroleum Research","volume":"8 3","pages":"Pages 291-300"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096249523000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The first pilot test of polyacrylamide microsphere alternate surfactant flood (PMAS) with mixtures of anionic-cationic surfactants (Sa/c) was carried out for a high-temperature, high-salinity, and high-hardness sandstone reservoir to demonstrate the potential of this novel technique to improve oil recovery. A critical micelle concentration (CMC) of 4.82 mg/L, an ultralow interfacial tension (IFT) of 8 × 10−4 mN/m, and a high oil solubilization of 22 were obtained. Static and dynamic adsorptions of Sa/c on natural core containing 15 wt% clay were reduced to about 2.20 and 0.30 mg/g-core, respectively, with the addition of adsorption inhibitor (AI). Since June 2014, the pilot test of PMAS was carried out in a Sinopec reservoir with a temperature of 87 °C, a salinity of 260,393 mg/L, and a hardness of 6,401 mg/L. Twelve cycles of alternative injection of 0.0125 PV Sa/c with a concentration of 0.1% and 0.0125 PV polyacrylamide microsphere with a concentration of 0.2% were conducted at an injection rate of 0.1 PV/yr, for a total of 0.3 PV chemical injection. As a result, the net daily oil production increased from 0 t to 6.5 t, and the water cut decreased from 96.3% to 93.8%, leading to an ultimate improved oil recovery of 6.3% original oil-in-place.