{"title":"Prediction of Stock Market Index Movement Using Pairwise Classification","authors":"Atli Ayca Hatice","doi":"10.24818/18423264/57.2.23.07","DOIUrl":null,"url":null,"abstract":". The prediction of index or stock price movements is an attractive and significant research topic for academia and the business world. In recent years, many approaches based on machine learning have been developed to create an effective prediction model. A substantial part of the articles on movement prediction focuses on predicting up-and-down movements of the stock market index and stock prices. This study focuses on four kinds of price movements and proposes a prediction scheme for the emerging multi-class classification task. The proposed approach is mainly based on pairwise classification. The experiments have been conducted on three data sets, namely, the FTSE 100, KOSPI, and S&P 500 indices, using nine technical indicators as inputs. The prediction performance of the approach is compared with the performance of five traditional techniques, multilayer perceptron, support vector machine, naive Bayes, k-nearest neighbor, and regularised multinomial regression. Experimental results based on 11 years of historical data from the FTSE 100, KOSPI, and S&P 500 indices between 2010 and 2021 demonstrate the effectiveness of the proposed pairwise classification-based scheme. The proposed scheme has achieved an accuracy of more than 84%, higher than other techniques. To our knowledge, this study is the first to include the categories presented and to predict the direction of price movements based on such pairwise classification.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.24818/18423264/57.2.23.07","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
. The prediction of index or stock price movements is an attractive and significant research topic for academia and the business world. In recent years, many approaches based on machine learning have been developed to create an effective prediction model. A substantial part of the articles on movement prediction focuses on predicting up-and-down movements of the stock market index and stock prices. This study focuses on four kinds of price movements and proposes a prediction scheme for the emerging multi-class classification task. The proposed approach is mainly based on pairwise classification. The experiments have been conducted on three data sets, namely, the FTSE 100, KOSPI, and S&P 500 indices, using nine technical indicators as inputs. The prediction performance of the approach is compared with the performance of five traditional techniques, multilayer perceptron, support vector machine, naive Bayes, k-nearest neighbor, and regularised multinomial regression. Experimental results based on 11 years of historical data from the FTSE 100, KOSPI, and S&P 500 indices between 2010 and 2021 demonstrate the effectiveness of the proposed pairwise classification-based scheme. The proposed scheme has achieved an accuracy of more than 84%, higher than other techniques. To our knowledge, this study is the first to include the categories presented and to predict the direction of price movements based on such pairwise classification.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.