Testing the symmetry of a dependence structure with a characteristic function

IF 0.6 Q4 STATISTICS & PROBABILITY
Tarik Bahraoui, T. Bouezmarni, Jean‐François Quessy
{"title":"Testing the symmetry of a dependence structure with a characteristic function","authors":"Tarik Bahraoui, T. Bouezmarni, Jean‐François Quessy","doi":"10.1515/demo-2018-0019","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes competing procedures to the tests of symmetry for bivariate copulas of Genest, Nešlehová and Quessy (2012). To this end, the null hypothesis of symmetry is expressed in terms of the copula characteristic function that uniquely determines the copula of a given bivariate population with continuous marginal distributions. Then, test statistics based on L2 weighted distances computed from an empirical version of the copula characteristic function are proposed. Their asymptotic behavior is derived under the null hypothesis as well as under general alternatives. In particular, it is established that these rank statistics behave asymptotically as first-order degenerate V-statistics under the null hypothesis and this large-sample representation is exploited in order to provide suitably adapted multiplier bootstrap versions for the computation of p-values. The simulations that are reported show that the new tests are more powerful than the competing methods based on the empirical copula introduced by Genest, Nešlehová and Quessy (2012).","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"6 1","pages":"331 - 355"},"PeriodicalIF":0.6000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2018-0019","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2018-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract This paper proposes competing procedures to the tests of symmetry for bivariate copulas of Genest, Nešlehová and Quessy (2012). To this end, the null hypothesis of symmetry is expressed in terms of the copula characteristic function that uniquely determines the copula of a given bivariate population with continuous marginal distributions. Then, test statistics based on L2 weighted distances computed from an empirical version of the copula characteristic function are proposed. Their asymptotic behavior is derived under the null hypothesis as well as under general alternatives. In particular, it is established that these rank statistics behave asymptotically as first-order degenerate V-statistics under the null hypothesis and this large-sample representation is exploited in order to provide suitably adapted multiplier bootstrap versions for the computation of p-values. The simulations that are reported show that the new tests are more powerful than the competing methods based on the empirical copula introduced by Genest, Nešlehová and Quessy (2012).
用特征函数检验依赖结构的对称性
摘要本文提出了Genest、Nešlehová和Quessy(2012)的二元copula对称检验的竞争过程。为此,对称的零假设被表示为唯一地决定具有连续边缘分布的给定二元总体的联结函数的联结函数。然后,提出了基于经验版本的copula特征函数计算的L2加权距离的检验统计量。在零假设和一般备选条件下,导出了它们的渐近行为。特别是,在零假设下,这些秩统计量表现为渐近的一阶退化v统计量,并且利用这种大样本表示,以便为p值的计算提供适当的乘法器自举版本。所报告的模拟表明,新的测试比基于Genest、Nešlehová和Quessy(2012)引入的经验联结公式的竞争方法更强大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信