{"title":"Methods of Estimation and Bias Corrected Maximum Likelihood Estimators of Unit Burr III Distribution","authors":"S. Dey, Liang Wang","doi":"10.1080/01966324.2021.1963357","DOIUrl":null,"url":null,"abstract":"Abstract In this article, various classical estimation methods are employed to estimate the parameters of unit Burr III distribution. Further, the associated second-order bias corrections of the MLEs of its parameters are obtained by using a modified bias-corrected approach. In addition, another parametric bootstrap bias correction method is also considered for model parameters. Extensive Monte-Carlo simulation studies are performed to evaluate different estimation methods in terms of their average biases and mean squared error, and the performance of these estimators are compared as well. Our results reveal that the bias corrections improve the accuracy of maximum likelihood estimates. Finally, one real data example is discussed to illustrate the applicability of the unit Burr III distribution.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"316 - 333"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1963357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In this article, various classical estimation methods are employed to estimate the parameters of unit Burr III distribution. Further, the associated second-order bias corrections of the MLEs of its parameters are obtained by using a modified bias-corrected approach. In addition, another parametric bootstrap bias correction method is also considered for model parameters. Extensive Monte-Carlo simulation studies are performed to evaluate different estimation methods in terms of their average biases and mean squared error, and the performance of these estimators are compared as well. Our results reveal that the bias corrections improve the accuracy of maximum likelihood estimates. Finally, one real data example is discussed to illustrate the applicability of the unit Burr III distribution.