Modal Characterization of Manual Wheelchairs

IF 1.9 Q3 ENGINEERING, MECHANICAL
Vibration Pub Date : 2022-07-21 DOI:10.3390/vibration5030025
O. Larivière, D. Chadefaux, C. Sauret, Layla Kordulas, P. Thoreux
{"title":"Modal Characterization of Manual Wheelchairs","authors":"O. Larivière, D. Chadefaux, C. Sauret, Layla Kordulas, P. Thoreux","doi":"10.3390/vibration5030025","DOIUrl":null,"url":null,"abstract":"Manual wheelchair (MWC) users are exposed to whole-body vibrations (WBVs) during propulsion. Vibrations enter the MWC structure through the wheels’ hub, propagate according to the MWC dynamical response, and finally reach the user’s body by the footrest, seat, backrest, and handrims. Such exposure is likely to be detrimental to the user’s health and a source of discomfort and fatigue which could, in daily life, impact users’ social participation and performance in sports. To reduce WBV exposure, a solution relies on MWC dynamical response modelling and simulation, where the model could indeed be used to identify parameters that improve the MWC dynamic. As a result, it is necessary to first assess the MWC dynamical response. In this approach, experimental modal analyses were conducted on eleven MWCs, including daily and sport MWCs (tennis, basketball, and racing). Through this procedure, modal properties (i.e., modal frequencies, damping parameters, and modal shapes) were identified for each MWC part. The results pointed out that each MWC investigated, even within the same group, revealed specific vibration properties, underlining the difficulty of developing a single vibration-reducing system for all MWCs. Nevertheless, several common dynamical properties related to MWC comfort and design were identified.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration5030025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Manual wheelchair (MWC) users are exposed to whole-body vibrations (WBVs) during propulsion. Vibrations enter the MWC structure through the wheels’ hub, propagate according to the MWC dynamical response, and finally reach the user’s body by the footrest, seat, backrest, and handrims. Such exposure is likely to be detrimental to the user’s health and a source of discomfort and fatigue which could, in daily life, impact users’ social participation and performance in sports. To reduce WBV exposure, a solution relies on MWC dynamical response modelling and simulation, where the model could indeed be used to identify parameters that improve the MWC dynamic. As a result, it is necessary to first assess the MWC dynamical response. In this approach, experimental modal analyses were conducted on eleven MWCs, including daily and sport MWCs (tennis, basketball, and racing). Through this procedure, modal properties (i.e., modal frequencies, damping parameters, and modal shapes) were identified for each MWC part. The results pointed out that each MWC investigated, even within the same group, revealed specific vibration properties, underlining the difficulty of developing a single vibration-reducing system for all MWCs. Nevertheless, several common dynamical properties related to MWC comfort and design were identified.
手动轮椅的模态特性
手动轮椅(MWC)使用者在推进过程中会受到全身振动(WBVs)的影响。振动通过轮毂进入MWC结构,根据MWC的动力响应进行传播,最终通过脚凳、座椅、靠背和把手到达使用者的身体。这种接触可能对使用者的健康有害,并造成不适和疲劳,在日常生活中可能影响使用者的社会参与和运动表现。为了减少WBV暴露,一种解决方案依赖于MWC动态响应建模和仿真,其中模型确实可以用于识别改善MWC动态的参数。因此,有必要首先评估MWC的动力响应。在这种方法中,对11个mwc进行了实验模态分析,包括日常mwc和运动mwc(网球、篮球和赛车)。通过该程序,确定了每个MWC部件的模态特性(即模态频率、阻尼参数和模态振型)。研究结果指出,即使在同一组MWC中,每个MWC都显示出特定的振动特性,这强调了为所有MWC开发单一减振系统的难度。然而,确定了与MWC舒适性和设计相关的几个常见动力学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信