S. Podgorskaya, A. Podvesovskii, R. Isaev, N. Antonova
{"title":"Fuzzy cognitive models for socio-economic systems as applied to a management model for integrated development of rural areas","authors":"S. Podgorskaya, A. Podvesovskii, R. Isaev, N. Antonova","doi":"10.17323/1998-0663.2019.3.7.19","DOIUrl":null,"url":null,"abstract":"The paper is devoted to fuzzy cognitive modeling, which is an effective tool for studying semistructured socio-economic systems. The emphasis is on the process of developing (identification) fuzzy cognitive models, which are the most complex and critical stage of cognitive modeling. Existing identification methods are classified as either expert or statistical, depending on the source of information used. Typically, when constructing fuzzy cognitive models of semi-structured systems, the system under consideration possesses both quantitative (measurable) factors and factors of a relative, qualitative nature. While statistical data on the quantitative factors may be available, the only available source of information on the qualitative factors is expert knowledge. MODELING OF SOCIAL AND ECONOMIC SYSTEMS","PeriodicalId":41920,"journal":{"name":"Biznes Informatika-Business Informatics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biznes Informatika-Business Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17323/1998-0663.2019.3.7.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 11
Abstract
The paper is devoted to fuzzy cognitive modeling, which is an effective tool for studying semistructured socio-economic systems. The emphasis is on the process of developing (identification) fuzzy cognitive models, which are the most complex and critical stage of cognitive modeling. Existing identification methods are classified as either expert or statistical, depending on the source of information used. Typically, when constructing fuzzy cognitive models of semi-structured systems, the system under consideration possesses both quantitative (measurable) factors and factors of a relative, qualitative nature. While statistical data on the quantitative factors may be available, the only available source of information on the qualitative factors is expert knowledge. MODELING OF SOCIAL AND ECONOMIC SYSTEMS