What determines the success of the species identification? The identification of 10 deer (Cervidae) species in China based on multiple parameters of hair morphology
Y. Hua, Jiao Wang, Hong Wang, Wei Zhang, K. Vitekere, Guangshun Jiang
{"title":"What determines the success of the species identification? The identification of 10 deer (Cervidae) species in China based on multiple parameters of hair morphology","authors":"Y. Hua, Jiao Wang, Hong Wang, Wei Zhang, K. Vitekere, Guangshun Jiang","doi":"10.2981/wlb.00673","DOIUrl":null,"url":null,"abstract":"Hair morphological structure is widely utilized for species identification based on the differentiation of scales and medullar pattern of mammal hairs. To determine what may influence the accuracy of identification using hair morphology, we measured and calculated 11 parameters of hair morphometry of 10 deer species in China. Our results suggested that the morphological parameters of deer hairs have extensive overlap within Cervidae species and we obtained a correct discriminant rate of 90.1% for 10 deer species. For the five sympatric deer species in the northeastern forests of China, 94.2% of hairs can be identified correctly, with a correct discriminant rate of 89.7% and 83.9% when the hair tip or root was absent, respectively. When both hair tip and root were absent, we obtained a correct discriminant rate of 73.6%. In addition, we obtained a correct discriminant rate of 97.9% for five sympatric deer species using a blind test approach to remove observer bias. Hair morphological characteristics are similar within the family or genus because of their close genetic relationships. Furthermore, species with similar living habitat conditions may have similar hair morphological structure. These factors influence discriminant capacity, and we evidently cannot identify them more accurately when using only one morphological parameter of hair. While understanding the above, our quantitative multi-parameter morphometric analyses successfully identified the hairs of deer, and likely have significant applications concerning further mammal species.","PeriodicalId":54405,"journal":{"name":"Wildlife Biology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wildlife Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2981/wlb.00673","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Hair morphological structure is widely utilized for species identification based on the differentiation of scales and medullar pattern of mammal hairs. To determine what may influence the accuracy of identification using hair morphology, we measured and calculated 11 parameters of hair morphometry of 10 deer species in China. Our results suggested that the morphological parameters of deer hairs have extensive overlap within Cervidae species and we obtained a correct discriminant rate of 90.1% for 10 deer species. For the five sympatric deer species in the northeastern forests of China, 94.2% of hairs can be identified correctly, with a correct discriminant rate of 89.7% and 83.9% when the hair tip or root was absent, respectively. When both hair tip and root were absent, we obtained a correct discriminant rate of 73.6%. In addition, we obtained a correct discriminant rate of 97.9% for five sympatric deer species using a blind test approach to remove observer bias. Hair morphological characteristics are similar within the family or genus because of their close genetic relationships. Furthermore, species with similar living habitat conditions may have similar hair morphological structure. These factors influence discriminant capacity, and we evidently cannot identify them more accurately when using only one morphological parameter of hair. While understanding the above, our quantitative multi-parameter morphometric analyses successfully identified the hairs of deer, and likely have significant applications concerning further mammal species.
期刊介绍:
WILDLIFE BIOLOGY is a high-quality scientific forum directing concise and up-to-date information to scientists, administrators, wildlife managers and conservationists. The journal encourages and welcomes original papers, short communications and reviews written in English from throughout the world. The journal accepts theoretical, empirical, and practical articles of high standard from all areas of wildlife science with the primary task of creating the scientific basis for the enhancement of wildlife management practices. Our concept of ''wildlife'' mainly includes mammal and bird species, but studies on other species or phenomena relevant to wildlife management are also of great interest. We adopt a broad concept of wildlife management, including all structures and actions with the purpose of conservation, sustainable use, and/or control of wildlife and its habitats, in order to safeguard sustainable relationships between wildlife and other human interests.